영양 강화제 종류에 따른 rotifer, Brachionus plicatilis의 생화학적 조성

Biochemical Composition of Rotifer, Brachionus plicatilis Enriched with Different Commercial Enrichments

  • 박흠기 (강릉대학교 해양생명공학부) ;
  • ;
  • Joseph A. Brown (Ocean Sciences Centre, Memorial University of Newfoundland)
  • Published : 2004.08.01

Abstract

본 연구는 해산 어류의 성장 및 높은 생존율 개선을 위하여 rotifer의 효율적인 영양 강화제를 선택할 목적으로 여러 가지 영양 강화제의 종류(Enhance, Advantage, Algamac-2000, DHA-Selco및 Advantage+Chlorella)와 영양 강화 시간(6, 12및 24 시간)에 따른 rotifer의 생화학적 조성을 조사하였다. 영양 강화제의 종류에 따른 총 지질은 영양 강화 시간에 따라 증가하였지만, 영양 강화제의 종류 및 영양 강화 시간에 따 른 유의적인 차이는 보이지 않았다. 그러나 Advantage+Chlorella 실험구를 제외한 rotifer의 총 단백질 함량은 영양 강화 시간에 따라서 감소하는 경향을 보였다 모든 실험구에서 영양 강화된 rotifer의 단백질/지질의 비율은 초기 영양 강화 이전의 rotifer (5.0)보다 감소하는 경향을 보였고 Advantage+Chlorella 실험구에서 2.7로 가장 놀게 나타났다 Enhance, Advantage 및 Advantage+Chlorella로 영양 강화된 rotifer의 phospholipid비율이 Algamac-2000파 DHA-Selco보다 유의적으로 높게 나타났다. 모든 실험구의 rotifer 건조 중량 기준으로 DHA 함량은 영양 강화 시간에 따라 증가되는 경향을 보였고, 24시간 이후 가장 높은 DHA 함량은 Advantage 실험구에서 2.5%로 나타났지만 Algamac-2000 실험구를 제외한 모든 실험구와는 유의적인 차이는 보이지 않았다. 그리고 n-3 HUFA및 DHA의 함량은 Algamac-2000, DHA-Selco 및 Advantage+Chlorella 실험구의 12시간과 24시간 간의 유의적인 차이는 보이지 알았다. 영양 강화한 rotifer의 DHA/EPA의 비율은 가장 높은 Advantage+Chlorella 실험구의 11:1과 가장 낮은 DHA-Selco 실험구의 4:1과는 유의적인 차이를 보였다. 본 연구의 결과를 통해서 Enhance, Advantage, Advantage+Chlorella로 영양 강화한 rotifer의 phospholipid, DHA/EPA, proteirlipid의 비율이 Algamac-2000및 DHA-Selco의 것보다 높아 모든 해산 어류 자어를 위해서 rotifer의 영양을 개선할 수 있는 효과적인 영양 강화제로 판단된다. 특히, rotifer의 영양 강화시 Chlorella의 첨가는 자어의 성장을 위해서 중요한 protein 함량이 감소되지 않기 때문에 효과적인 방법인 것으로 판단된다.

This study was carried out to investigate changes in biochemical composition of rotifer, Brachionus plicatilis, enriched with the commercial enrichments (Enhance, Advantage, Algamac-2000, DHA-Selco and Advantage + Chlorella) at various durations of enrichment (0, 6, 12 and 24 hr) to improve the growth and survival of marine fish larvae. Total lipid content of rotifers enriched with various enrichments tended to increase with an increase in durations of enrichment up to 6 hr, but after that, was not significantly affected by enrichment materials. However, total protein content of rotifers enriched groups except for Advantage+Chlorella decreased with the increase in duration of enrichment. The highest protein/lipid ratio showed 2.7 in rotifer enriched with the Advantage +Chlorella. The phospholipid/lipid ratio of rotifer enriched with the Enhance, Advantage and Advantage+Chlorella groups was significantly higher than that of enriched rotifer with the Algamac-2000 and DHA-Selco groups. The highest DHA level, 2.5%, of rotifer enriched for 24 hr was obtained in the Advantage, but was not significantly different among other groups, except for Algamac-2000. No significant difference in DHA level of rotifer enriched with the DHA-Selco, Algamac-2000 and Advantage+Chlorella groups was observed between l2h and 24hr of enrichment. The DHA/EPA ratio in the enriched rotifers varied among enrichment material groups, ranged from a high level of 11.1:1 in the Advantage+Chlorella group to a low level of 4.1:1 in DHA-Selco group. The results from this study indicate that rotifers enriched with Enhance, Advantage and Advantage+Chlorella seemed to be effective to improve nutritional value of rotifer for marine fish larvae because phospholipid, DHAJEPA and protein/lipid ratios of rotifer enriched with Enhance, Advantage+Chlorella were higher than those of rotifer enriched with either DHA-Selco or Algamac-2000. Especially, supplementation of the Chlorella to these enrichments would appear to be effective for improvement of fish larval performance because of no reduction of protein level in rotifer, which is critical for growth of fish larvae.

Keywords

References

  1. Lipids v.26 Molecular species composition of the major diacylglycerophospholipids from muscle, liver, retina, and brain of cod (Gadus morhua) Bell, M. V.;J. R. Dick https://doi.org/10.1007/BF02536419
  2. Biochim. Biophys. Acta. v.1211 Effect of supplementation of 20:3(n-6), 20:4(n-6) and 20:5(n-3) on the production of prostaglandins E and F of the 1-, 2- and 3-series in turbot (Scophthalmus maximus) brain astroglial cells in primary culture Bell, J. G.;D. R. Tocher;J. R. Sargent https://doi.org/10.1016/0005-2760(94)90158-9
  3. Lipids v.30 Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.) Bell, M. V.;R. S. Batty;J. R. Dick;K. Fretwell;J. C. Navarro;J. R. Sargent https://doi.org/10.1007/BF02536303
  4. Aquaculture v.218 Arachidonic acid in aquaculture feeds: current status and future opportunities Bell, J. G.;J. R. Sargent https://doi.org/10.1016/S0044-8486(02)00370-8
  5. Aquaculture v.227 Optimising lipid nutrition in first-feedling flatfish larvae Bell, J. G.;L. A. McEvovy;A. Estevez;R. J. Shields;J. R. Sargent https://doi.org/10.1016/S0044-8486(03)00504-0
  6. Aquaculture v.179 Effect of dietary arachidonic acid levels on growth and survival of gilthead sea bream (Sparus aurata L.) larvae Bessonart, M.;M. S. Izquierdo;M. Salhi;C. M. Hernandez-Cruz;M. M. Gonzalez;H. Fernandez-Palacios https://doi.org/10.1016/S0044-8486(99)00164-7
  7. J. Fish Biol. v.47 Development of the digestive tract in larval summer flounder Bisbal, G. A.;D. A. Bengtson https://doi.org/10.1111/j.1095-8649.1995.tb01895.x
  8. Ph. D. thesis, Memorial University of Newfoundland Fatty acid biomarkers in a cold water marine environment Budge, S. M.
  9. Aquaculture v.210 Effects of docosahexaenoic, eicosapentaenoic and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichement experiment Copeman, L. A.;C. C. Parrish;J. A. Brown;M. Harel https://doi.org/10.1016/S0044-8486(01)00849-3
  10. Biometrics v.11 Mutiple-range and multiple F tests Duncan, D. B. https://doi.org/10.2307/3001478
  11. Seafood in Health and Nutrition-Transformation in Fisheries and Aquaculture: Global Perspectives Lipid and amino acid metabolism during early development of marine fish Evans, R. P.;P. Zhu;C. C. Parrish;J. A. Brown;Inshahidi, F.(ed.)
  12. Aquaculture v.180 Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids Estevez, A.;L. A. McEvoy;J. G. Bell;J. R. Sargent https://doi.org/10.1016/S0044-8486(99)00209-4
  13. Aquaculture v.227 Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value Evjemo, J. O.;K. I. Reitan;Y. Olsen https://doi.org/10.1016/S0044-8486(03)00503-9
  14. J. Biol. Chem. v.22 A simple method for the isolation and purification of total lipids from animal tissues Folch, J.;M. Lees;G. H. Sloane-Stanley
  15. Aquaculture v.161 Histological change induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae Fontagen, S.;I. Geurden;A. M. Escaffre;P. Bergot https://doi.org/10.1016/S0044-8486(97)00271-8
  16. Aquaculture v.199 Effect of different levels of eicosapentaenoic acid and docosahexaenoic acid in Artemia nauplii on growth, survival and salinity tolerance of larvae of the Japanese flounder, Paralichthys olivaceus Furuita, H.;K. Konishi;T.Takeuchi
  17. Fish Physiol. Biochem. v.24 no.2 The effect of tissue docosahexaenoic and arachidonic acids levels on hypersaline tolerance and leucocyte composition in striped bass (Morone saxatilis) larvae Harel, M.;S. Gavasso;J. Leshin;A. Gubernatis;A. R. Place https://doi.org/10.1023/A:1011924704459
  18. Fish Physiol. Biochem. v.22 Recent advances in lipid nurition in fish larvae Izquierdo, M. S.;J. Socorro;L. Arantzamendi;C. M. Hemandez-Cruz https://doi.org/10.1023/A:1007810506259
  19. Aquaculture v.155 Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish Kanazawa, A. https://doi.org/10.1016/S0044-8486(97)00123-3
  20. J. Korean Fish. Soc. v.32 no.6 Availability of marine bacteria (Erythrobacter sp.$S{\eth}-1$) for enrichment of livefood in the slime flounder larvae, Microstomus achne Kang, S. J.;Y. S. Lim;S. U. Park;W. J. Lee;B. D. Cho;H. G. Park;Y. S. Park;H. Y. OH
  21. Fish Physiol. Biochem. v.10 The effect of dietary lecithin and lipase, as a function of age, on n-9 fatty acid incorporation in the tissue lipids of Sparus aurata larvae Koven, W. M.;S. Kolkovski;A. Tandler;G. Wm. Kissil;D. Sklan https://doi.org/10.1007/BF00004502
  22. Aquac. Nutr. v.4 The effect of dietary phosphatidylcholine and its constituent fatty acids on microdiet ingestion and fatty acid absorption rate in gilthead sea bream, Sparus aurata, larvae Koven, W. M.;G. Parra;S. Kolkovski;A. Tandler https://doi.org/10.1046/j.1365-2095.1998.00101.x
  23. Hydrobiologia v.186;187 Rotifers as food in aquaculture Lubzens, E.;O.Gibson;O. Zmaora;A. Sukenik
  24. Hydrobiologia v.358 Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus Maruyama, I.;T. Nakao;I. Shigeno;Y. Ando;K. Hirayama https://doi.org/10.1023/A:1003116003184
  25. Aquaculture v.134 Autoxidation of oil emulsions during the Artemia enrichment process McEvoy, L. A.;J. C. Navarro;J. G. Bell;J. R. Sargent https://doi.org/10.1016/0044-8486(95)00048-7
  26. Bull. Aquacult. Assoc. Can. v.98 Influence of dietary levels of eicosapentaenoic and arachidonic acids on the pigmentation success of turbot (Scophthalmus maximus L.) and halibut (Hippoglossus hippoglossus L.) McEvoy, L. A.;A. Estevez;J. G. Bell;R. J. Shields;B. Gara;J. R. Sargent
  27. Aquaculture v.163 Lipid and fatty acid composition of normal and malpigmented Atlantic halibut (Hippoglossus hippoglossus) fed enriched Artemia: a comparison with fry fed wild copepods McEvoy, L. A.;T. Naess;J. G. Bell;O. Lie https://doi.org/10.1016/S0044-8486(98)00237-3
  28. Aquaculture v.229 First feeding of winter flounder (Pseudopleuronectes americanus) larvae: use of Brachionus plicatilis acclimited at low temperature as live prey Mercier, L.;C. Audet;J. Noue.;B. Parent;C. C. Parrish;N. W. Ross https://doi.org/10.1016/S0044-8486(03)00399-5
  29. J. Lipid Res. v.5 Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol Morrison, W.R.;L.M. Smith
  30. Bull. Jpn. Soc. Sci. Fish. v.54 Interaction of dietary oxidised fish oil and glutathione of fingerling yellowtail Seriola quinqueradiata Murai, T.;T. Akiyama;H. Ogata;T. Suzuki https://doi.org/10.2331/suisan.54.145
  31. Hydrobiologia v.358 Protien and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding condition Oie, G.;Y. Olsen https://doi.org/10.1023/A:1003145205602
  32. Aquaculture v.153 Protein and carbon utilization of rotifers (Brachionus plicatilis) in first feeding of turbot larvae (Scophthalmus maximus L.) Oie, G.;P. Makridis;K. I. Reitan;Y. Olsen https://doi.org/10.1016/S0044-8486(96)01514-1
  33. Can. J. Fish. Aquat. Sci. v.44 Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection Parrish, C. C. https://doi.org/10.1139/f87-087
  34. Lipids in Freshwater Ecosystems Determination of total lipid, lipid classes and fatty acids in aquatic samples Parrish, C. C.;Arts, M. T.(ed.);Wainman, B. C.(ed.)
  35. J. Korean Fish. Soc. v.32 no.3 High density cultivation of rotifer, Brachionus rotundiformis in the different diets Park, H. G.;S. K. Kim;K. Y. Park;Y. J. Park
  36. J. Korean Fish. Soc. v.32 no.6 Change of fatty acid compositions of rotifer according to enrichment diets methods in the high density culture Park, H. G.;K. W. Lee;S. M. Lee;S. K. Kim;H. S. Kim
  37. J. Korean Fish. Soc. v.33 no.2 Dietary value of rotifer fed on the different diets in high density culture for flounder larvae, Paralichthys olivaceus Park, H. G.;K. W. Lee;S. K. Kim;S. M. Lee;J. H. Lee;Y. S. Lim
  38. Aquaculture v.177 Larviculture of marine fish: problems and perspectives Planas, M.;I. Cunha https://doi.org/10.1016/S0044-8486(99)00079-4
  39. Aquaculture v.155 The significance of lipids at early stages of marine fish: a review Rainuzzo, J.R.;K.I. Reitan;Y. Olsen https://doi.org/10.1016/S0044-8486(97)00121-X
  40. Aquaculture v.155 A review of the nutritional effects of algae in marine fish larvae Reitan, K. I.;J. S. Rainuzzo;G. Oie;Y. Olsen https://doi.org/10.1016/S0044-8486(97)00118-X
  41. Aquaculture v.147 Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period Rodriguez, C.;J. A. Perez;M. S. Izquierdo;J. R. Cejas;A. Bolanos;A. Lorenzo https://doi.org/10.1016/S0044-8486(96)01397-X
  42. Aquaculture v.150 Influence of EPA/DHA ratio in rotifers on gilthead seabream (Sparus aurata) larval development Rodriguez, C.;J. A. Perez;M. Diaz;M. S. Izquierdo;H. Fernandez-Palacios;A. Lorenzo https://doi.org/10.1016/S0044-8486(96)01472-X
  43. Aquaculture v.177 Fish larval nutrition: a review of recent advances in the roles of amino acids Ronnestad I.;A. Thorsen;R. N. Finn https://doi.org/10.1016/S0044-8486(99)00082-4
  44. Aquaculture v.155 Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds Sargent, J.;L. A. McEvoy;J. G. Bell https://doi.org/10.1016/S0044-8486(97)00122-1
  45. Aquaculture v.177 Recent developments in the essential fatty acid nutrition of fish Sargent, J.;J. G. Bell;L. A. McEvoy;D. Tocher;A. Estevz https://doi.org/10.1016/S0044-8486(99)00083-6
  46. Nippon Suisan Gakkaishi v.60 Nutritive value of DHA-enriched rotifer for larval cod Takeuchi, T.;F. Zheng;T. Takeuchi;M. Yosheda;J. Hirokawa;:T. Watanabe https://doi.org/10.2331/suisan.60.641
  47. Fisheries Science v.5 Essential fatty acid requirements of aquatic animals with emphasis on fish larvae and fingerlings Takeuchi, T.
  48. J. World. Aquacult. Soc. v.24 Importance of docosahexaenoic acid in marine larval fish Watanabe, T. https://doi.org/10.1111/j.1749-7345.1993.tb00004.x
  49. Hydrobiologia v.358 Preliminary results in improving essential fatty acids enrichment of rotifer cultured in high density Yoshimatsu, T.;H. Imoto;M. Hayashi;K. Toda;K. Yoshimura https://doi.org/10.1023/A:1003161214088
  50. Nippon Suisan Gakkaishi v.62 Requirement of larval cod for arachidonic acid, eiocosapentaenoic acid and docosahexaenoic acid using by their enriched Artemia nauplii Zheng, F.;T. Takeuchi;K. Yosheda;M. Kobayashi;J. Hirokawa;T. Watanabe https://doi.org/10.2331/suisan.62.669