Formation of an Intestine-Cartilage Composite Graft for Tracheal Reconstruction

기관 재건을 위한 장과 연골의 복합 이식판 개발

  • Jheon, Sang-Hoon (Dept. of Thoracic and Cardiovascular Surgery, College of Medicine, Catholic University of Daegu) ;
  • Lee, Sub (Dept. of Thoracic and Cardiovascular Surgery, College of Medicine, Catholic University of Daegu) ;
  • Jung, Jin-Yong (Dept. of Anesthesiology, College of Medicine, Catholic University of Daegu) ;
  • Kong, Jun-Hyuk (Biomedical Research Institute, Kyungpook National University) ;
  • Lim, Jeong-Ok (Biomedical Research Institute, Kyungpook National University) ;
  • Kim, Yu-Mi (Biomedical Research Institute, Kyungpook National University) ;
  • Jin, Chun-Jin (Biomedical Research Institute, Kyungpook National University) ;
  • Park, Tae-In (Biomedical Research Institute, Kyungpook National University) ;
  • Lee, jae-Ik (Dept. of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine) ;
  • Sung, Seok-Whan (Dept. of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine) ;
  • Choh, Joong-Haeng (Dept. of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine)
  • 전상훈 (대구가톨릭대학교 의과대학 흉부외과학교실) ;
  • 이섭 (대구가톨릭대학교 의과대학 흉부외과학교실) ;
  • 정진용 (대구가톨릭대학교 의과대학 마취과학교실) ;
  • 공준혁 (경북대학교 생명과학연구소) ;
  • 임정옥 (경북대학교 생명과학연구소) ;
  • 김유미 (경북대학교 생명과학연구소) ;
  • 김광춘 (경북대학교 생명과학연구소) ;
  • 박태인 (경북대학교 생명과학연구소) ;
  • 이재익 (서울대학교 의과대학 흉부외과학교실) ;
  • 성숙환 (서울대학교 의과대학 흉부외과학교실) ;
  • 조중행 (서울대학교 의과대학 흉부외과학교실)
  • Published : 2004.06.01

Abstract

Background: Tracheal transplantation is necessary in patients with extensive tracheal stenosis, congenital lesions and other oncologic conditions but bears. many critical problems compared to other organ transplantations. The purpose of this study was to develop intestine-cartilage composite grafts for potential application in tracheal reconstruction by free intestinal graft. Material and Method: Hyaline cartilage was harvested from trachea of 2 weeks old New Zealand White Rabbits. Chondrocytes were isolated and cultured for 8 weeks. Cultured chondrocytes were seeded in the PLGA scaffolds and mixed in pluronic gel Chondrocyte bearing scaffolds and gel mixture were embedded in submucosal area of stomach and colon of 3 kg weighted New Zealand White Rabbits under general anesthesia. 10 weeks after implantation, bowels were harvested for evaluation. Result: We identified implantation site by gross examination and palpation. Developed cartilage made a good frame for shape memory. Microscopic examinations included special stain s howed absorption of scaffold and cartilage formation even though it was not fully matured. Conclusion: Intestine-cartilage composite graft could be applicable in the future as tracheal substitute and should be further investigated.

배경: 암이나 협착 등의 각종 기관질환으로 광범위한 기관절제가 필요한 경우에는 기관 이식이 필요하나, 다른 장기의 이식술과 비교하여 많은 어려움이 있다. 이에 본 연구에서는 이상적인 기관 대체물을 개발하기 위한 노력의 일환으로, 조직 공학적 기법을 통하여 기관 재건에 적용할 수 있는 소장-연골 복합 이식판의 개발이 가능한가를 알아보고자 하였다. 대상 및 방법: 생후 2주 된 토끼의 기관과 이개로부터 각각 연골세포를 채취하여 8주간 배양하였다. 배양된 초자 연골세포와 탄성 연골세포를 담체(PLGA)에 심거나 플루로닉 겔에 혼합한 후에, 4 종류의 혼합체를 토끼의 위장과 대장의 점막하 조직에 이식하고 10주 후에 연골 형성 여부를 평가하였다. 결과: 육안과 촉진으로 이식 부위를 판별할 수 있었으며, 현미경적 소견상 담체의 흡수와 연골의 형성을 확인할 수 있었다. 특히 초자 연골세포-담체 혼합체에서 연골의 형태를 잘 갖추고 있었다. 결론: 장-연골 복합 이식판 개발의 전망은 밝으며, 이상적인 기관 대체물로서 기관 재건에 기여할 가능성이 있다고 사료된다.

Keywords

References

  1. Plast Reconstr Surg v.72 Cartilage tube formation by perichondrium: a new concept for tracheal reconstruction Kon,M.;van den Hooff,A. https://doi.org/10.1097/00006534-198312000-00008
  2. Ann Thorac Surg v.50 Tracheal reconstruction with polytetrafluoroethylene graft in dogs Cull,D.L.;Lally,K.P.;Mair,E.A.;Daidon,M.;Parsons,D.S. https://doi.org/10.1016/0003-4975(90)91116-S
  3. Artif Organ v.13 Isoelastic polyurethane prosthesis for segmental trachea replacement in beagle dogs Schauwecker,H.H.;Gerlach,J.;Planck,H.;Bucherl,E.S. https://doi.org/10.1111/j.1525-1594.1989.tb02866.x
  4. Ann Thorac Surg v.64 Porous-type tracheal prosthesis sealed with collagen sponge Teramachi,M.;Nakamura,T.;Yamamoto,Y.;Kiyotani,T.;Takimoto,Y.;Shimizu,Y. https://doi.org/10.1016/S0003-4975(97)00755-8
  5. J Thorac Cardiovasc Surg v.74 Replacement of the trachea with dura mater. Experimental work Sabas,A.A.;Uez,J.B.;Rojas,O.;Inones,A.;Aranguren,J.A.
  6. Lancet v.1 Tracheal allotransplantation Rose,K.G.;Sesterhenn,K.;Wustrow,F. https://doi.org/10.1016/S0140-6736(02)95352-3
  7. Eur J Cardiothorac Surg v.7 Tracheal alograft replacement : an unsuccessful method Lenot,B.;Macchiarini,P.;Dulmet,E.;Weiss,M.;Dartevelle,P.H. https://doi.org/10.1016/1010-7940(93)90261-9
  8. Surg Gynecol Obstet v.122 Experimental reconstruction of cervical trachea after circumferential resection Grillo,H.C.;Dignan,E.F.;Miura,T.
  9. Laryngoscope v.83 Reconstruction of the canine thachea with urinary bladder wall Marshak,G.;Porter,J.H.;McAdams,J.A. https://doi.org/10.1288/00005537-197307000-00011
  10. Ann Thorac Surg v.49 Experimental reconstruction of the canine trachea with a free revasculized small bowel graft Letang,E.;Sanchez Lloret,J.;Gimferrer,J.M.;Ramirez,J.;Vicens,A. https://doi.org/10.1016/0003-4975(90)90875-7
  11. Ann Thorac Surg v.49 Tracheal reconstruction by esophageal interposition : an experimental study Kato,R.;Onuki,A.S.;Watanabe,M.(et al.) https://doi.org/10.1016/0003-4975(90)90873-5
  12. Sceience v.260 Tissue engineering Langer,R.;Vacanti,J.P. https://doi.org/10.1126/science.8493529
  13. Lancet v.354 no.SUP.1 Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation Vacanti,J.P.;Langer,R.
  14. Yearbook of cell and tissue transplantation Tissue engineering: cartilage, bone, and muscle Ibarra,C.;Langer,R.;Vacanti,J.P.;Lanza,R.P.(ed.);Chick,W.L.(ed.)
  15. Plast Reconstr Surg v.88 Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation Vacanti,C.A.;Langer,R.;Schloo,B.;Vacanti,J.P. https://doi.org/10.1097/00006534-199111000-00001
  16. Plast Reconstr Surg v.94 Cartilage engineered in predetermined shapes employng cell transplantation on synthetic biodegradable polymers Kim,W.S.;VAcanti,J.P.;Cima,L.(et al.) https://doi.org/10.1097/00006534-199408000-00001
  17. Mater Res Soc Symp Prc v.252 Tissue engineered growth of new cartilage in the shape of a huma earusing synthetic polymers seeded with chondrocytes Vacanti,C.A.;Cima,L.G.;Ratkowski,D.(et al.)
  18. Biomaterials v.15 Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes Puelacher,W.C.;Mooney,D.;Langer,R.;Upton,J.;Vacanti,J.P.;Vacanti,C.A. https://doi.org/10.1016/0142-9612(94)90031-0
  19. J Oral Maxillofac Surg v.52 Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage Puelacher,W.C.;Wisser,J.;Vacanti,C.A.;Ferraro,N.F.;Jaramillo,D.;Vacanti,J.P. https://doi.org/10.1016/0278-2391(94)90538-X
  20. Am J Sports Med v.22 Joint resurfacing with cartilage grown in situ from cell-polymer structures Vacanti,C.A.;Kim,W.;Schloo,B.;Upton,J.;Vacanti,J.P. https://doi.org/10.1177/036354659402200408
  21. Transplant Proc v.29 Tissue engineered meniscus: a potential new alternative to allogenic meniscus transplantation Ibarra,C.;Jannetta,C.;Vacanti,C.A.(et al.) https://doi.org/10.1016/S0041-1345(96)00337-5
  22. Plast Reconstr Surg v.102 Tissue-engineered nipple reconstruction Cao,Y.L.;Lach,E.;Kim,T.H.;Rodriguez,A.;Arevalo,C.A. https://doi.org/10.1097/00006534-199812000-00002
  23. J Pediatr Surg v.29 Experimental tracheal replacement using tissue-engineered cartilage Vacanti,C.A.;Paoge,K.T.;Kim,W.S.;Sakata,J.;Upton,J.;Vacanti,J.P. https://doi.org/10.1016/0022-3468(94)90318-2
  24. Plast Reconstr Surg v.333 Characteristics of cartilage engineered from human pediatric auricular cartilage Rodriuez,A.;Cao,Y.L.;Ibarra,C.(et al.)
  25. J Korean Soc Plast Reconstr Surg v.28 no.3 Tissue engineered cartilage formation using human hyaline chondrocytes and elastic chondrocytes Shin,D.;Han,E.;Park,J.(et al.)
  26. J Biomed Eug Res v.23 no.2 Tissue engineered cartilage formation on various PLGA Scaffolds Kim,Y.H.;Lim,J.O.;Chung,H.Y.;Park,T.I.;Baek,W.Y.
  27. Biomaterials v.16 Degradation of poly(lactice-co-glycolic acid)microspheres: effect of copolymer composition Park,T.G. https://doi.org/10.1016/0142-9612(95)93575-X