Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line

  • Hong, Keum-Shik (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Chang-Won (Department of Mechanical and Intelligent Systems Engineering, Pusan National University) ;
  • Hong, Kyung-Tae (Department of Mechanical and Intelligent Systems Engineering, Pusan National University)
  • Published : 2004.03.01

Abstract

In this paper, an active vibration control of a translating steel strip in a zinc galvanizing line is investigated. The control objectives in the galvanizing line are to improve the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption. The translating steel strip is modeled as a moving belt equation by using Hamilton’s principle for systems with moving mass. The total mechanical energy of the strip is considered to be a Lyapunov function candidate. A nonlinear boundary control law that assures the exponential stability of the closed loop system is derived. The existence of a closed-loop solution is shown by proving that the closed-loop dynamics is dissipative. Simulation results are provided.

Keywords

References

  1. JSME International Journal Series C v.42 no.4 Boundary layer control with a moving belt system for studies on wing-in-ground-effect M. R. Ahmed;H. Sirogane;Y. Kohama https://doi.org/10.1299/jsmeb.42.619
  2. Journal of Applied Mechanics v.34 Nonlinear transverse oscillations in traveling strings by the method of harmonic balance V. A. Bapat;P. Srinivasan https://doi.org/10.1115/1.3607783
  3. Quarterly of Applied Mathematics v.3 On the nonlinear vibration problem of the elastic string G. F. Carrier
  4. Automatica v.31 no.5 Adaptive control of hot-dip galvanizing D. Chen https://doi.org/10.1016/0005-1098(94)00132-3
  5. Vibration and Damping in Distributed Systems G. Chen;J. Zhou
  6. Journal of Vibration and Control v.9 no.10 Exponential stabilization of an axially moving tensioned strip by passive damping and boundary control J.-Y. Choi;K.-S. Hong;K.-J. Yang
  7. Analytical Fluid Dynamics G. Emanuel
  8. Automatica v.35 no.1 Exponential stability of an axially moving string by linear boundary feedback R. F. Fung;J. W. Wu;S. L. Wu https://doi.org/10.1016/S0005-1098(98)00173-3
  9. ASME Journal of Dynamic Systems, Measurement, and Control v.121 no.1 Stabilization of an axially moving string by nonlinear boundary feedback R. F. Fung;J. W. Wu;S. L. Wu https://doi.org/10.1115/1.2802428
  10. Journal of the Mathematical Society of Japan v.19 Nonlinear semigroups in Hubert space Y. Komura https://doi.org/10.2969/jmsj/01940493
  11. IEEE Trans. on Automatic Control v.41 no.2 Boundary feedback stabilization of a rotating body-beam system H. Laousy;C. Z. Xu;C. Sallet https://doi.org/10.1109/9.481526
  12. ASME Journal of Dynamics Systems, Measurement, and Control v.118 no.1 Vibration control of an axially moving string by boundary control S. Y. Lee;C. D. Mote https://doi.org/10.1115/1.2801153
  13. Automatica v.38 no.3 Adaptive vibration isolation for axially moving strings: theory and experiment Y. Li;D. Aron;D. Rahn https://doi.org/10.1016/S0005-1098(01)00219-9
  14. Journal of Engineering Mathematics v.7 no.3 Hamilton's principle for systems of changing mass D. B. Mclver https://doi.org/10.1007/BF01535286
  15. Journal of Sound and Vibration v.200 no.4 Non-linear vibration of power transmission belts J. Moon;J. A. Wickert https://doi.org/10.1006/jsvi.1996.0709
  16. IEEE Trans. on Automatic Control v.37 no.5 Dynamics boundary control of a Euler-Bemoulli beam O. Morgul https://doi.org/10.1109/9.135504
  17. Journal of the Franklin Institute v.279 A study of band saw vibration C. D. Mote https://doi.org/10.1016/0016-0032(65)90273-5
  18. Automatica v.36 no.3 Robustly stabilizing controllers for dissipative infinite-dimensional systems with collocated actuators and sensors J. C. Oostveen;R. F. Curtain https://doi.org/10.1016/S0005-1098(99)00169-7
  19. JSME International Journal Series C v.40 no.4 Robust vibration control of a cantilever beam using self-sensing actuator K. Oshima;T. Takigami;Y. Hayakawa https://doi.org/10.1299/jsmec.40.681
  20. Semigroups of Linear Operators and Applications to Partial Differential Equations A. Pazy
  21. Proc. of the ASME Conference on Vibration and Control of Continuous Systems Experimental and theoretical analysis of a power transmission belt F. Pellicano;F. Vestroni;A. Fregolent
  22. International Journal of Non-Linear Mechanics v.33 no.4 Boundary layers and non-linear vibrations in an axially moving beam F. Pellicano;F. Zirilli https://doi.org/10.1016/S0020-7462(97)00044-9
  23. Automatica v.31 no.11 Robustness and continuity of the spectrum for uncertain distributed parameter systems R. Rebarber;S. Townley https://doi.org/10.1016/0005-1098(95)00088-E
  24. Automatica v.34 no.10 Boundary control of the axially moving kirchhoff string S. M. Shahruz https://doi.org/10.1016/S0005-1098(98)00074-0
  25. International Journal of Robust Nonlinear Control v.10 Boundary control of a non-linear axially moving string S. M. Shahruz https://doi.org/10.1002/(SICI)1099-1239(200001)10:1<17::AID-RNC458>3.0.CO;2-9
  26. IEEE Trans. On Control Syst. Technology v.7 no.2 Experiments and simulations on the nonlinear control of a hydraulic servo system G. A. Sohl;J. E. Bobrow https://doi.org/10.1109/87.748150
  27. Dynamical Systems and Evolution Equations J. A. Walker
  28. International Journal of Non-Linear Mechanics v.27 no.3 Non-Linear vibration of a traveling tensioned beam J. A. Wickert
  29. Shock and Vibration Digest v.20 no.5 Current research on the vibration and stability of axially moving materials J. A. Wickert;C. D. Mote https://doi.org/10.1177/058310248802000503
  30. Journal of Applied Mechanics v.57 Classical vibration analysis of axially moving continua J. A. Wickert;C. D. Mote https://doi.org/10.1115/1.2897085
  31. Automatica v.36 Dynamical analysis of distributed parameter tubular reactors J. J. Winkin;D. Dochain;P. Ligarius https://doi.org/10.1016/S0005-1098(99)00170-3
  32. Comptes rendus de l`Academie des sciences. Serie I. Mathematique v.332 no.9 Linearization method to stability analysis for nonlinear hyperbolic systems C.-Z. Xu;D.-X. Feng https://doi.org/10.1016/S0764-4442(01)01866-3
  33. Trans. of the Korean Society of Mechanical Engineers v.25 no.1 Transverse vibration control of an axially moving string by velocity boundary control (in Korean) D. H. Ryu;Y. P. Park
  34. Journal of Korean Society for Noise and Vibration Engineering v.12 no.4 Free vibration and dynamic stability of the axially moving continuum with time-varying length(in Korean) S.-Y. Lee;J. C. Sa;M. H. Lee https://doi.org/10.5050/KSNVN.2002.12.4.272
  35. Journal of Sound and Vibtation v.265 no.5 Robust adaptive boundary control of an axially moving string under a spatiotemporary varying tension K. -J. Yang;K. -S. Hong;F. Matsuno
  36. Trans. of the Korean Society of Mechanical Engineers v.25 no.1 Transverse vibration control of an axially moving string by velocity boundary control (in Korean) D. H. Ryu;Y. P. Park
  37. Journal of Korean Society for Noise and Vibration Engineering v.12 no.4 Free vibration and dynamic stability of the axially moving continuum with time-varying length(in Korean) S.-Y. Lee;J. C. Sa;M. H. Lee https://doi.org/10.5050/KSNVN.2002.12.4.272
  38. Journal of Sound and Vibtation v.265 no.5 Robust adaptive boundary control of an axially moving string under a spatiotemporary varying tension K. -J. Yang;K. -S. Hong;F. Matsuno