Interval-valued Fuzzy Set Reasoning Using Fuzzy Petri Nets

퍼지 페트리네트를 이용한 구간간 퍼지집합 추론

  • Published : 2004.05.01

Abstract

In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy Propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval-valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner(15). This paper presents a fuzzy Petri nets and proposes an interval-valued fuzzy reasoning algorithm for rule-based systems based on fuzzy Petri nets. Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy Propositions appearing in the furry production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The proposed interval-valued fuzzy set reasoning algorithm can allow the rule-based systems to perform fuzzy reasoning in a more flexible manner.

일반적으로 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 명제의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 명제의 확신도를 구간 값 퍼지 집합으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지 추론을 하는 것이 가능하게 된다[15]. 본 논문에서는 퍼지 페트리네트와 이 네트에 기반을 둔 규칙기반시스템을 위한 구간 값 퍼지 집합 추론 알고리즘을 제안한다. 규칙기반시스템에 있는 퍼지 생성규칙은 퍼지 페트리네트로 모형화 된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 확신도와 규칙의 확신도는 구간 값 퍼지 집합으로 표현한다. 제안한 구간 값 퍼지집합 추론알고리즘은 규칙기반시스템에서 더 유연한 퍼지추론을 하는 것을 가능하게 한다.

Keywords

References

  1. Zadeh, L. A., 'Fuzzy Sets,' Information and Control 8, pp.338-353, 1965 https://doi.org/10.1016/S0019-9958(65)90241-X
  2. 전명근, 변중남, 'Fuzzy Petri Nets를 이용한 퍼지추론 시스템의 모델링 및 추론기관의 구현', 전자공학회논문지, 제29권, 제7호, pp.508-519, 1992. 7
  3. 조상엽, 김기태, '퍼지 페트리네트를 이용한 퍼지 생성 규칙의 표현', 한국정보과학회논문지, 제21권, 제2호, pp.298-306, 1994, 2
  4. Camargo, H., Gomide, F., 'Hierarchical Fuzzy Petri Nets and ${\alpha}$-level Sets Inference,' Int'l J. Intelligent Systems, Vol. 14, No. 8, pp.859-871, 1999 https://doi.org/10.1002/(SICI)1098-111X(199908)14:8<859::AID-INT7>3.0.CO;2-4
  5. Chen, Shyi-Ming, 'Weighted Fuzzy Reasoning using Weighted Fuzzy Petri Nets,' IEEE Trans. on Knowledge and Data Engineering, Vol. 2, No. 3, pp.386-397, 2002 https://doi.org/10.1109/69.991723
  6. Chen, Shyi-Ming, Ke, J., and Chang, J., 'Knowledge Representation Using Fuzzy Petri-nets,' IEEE Trans. on KDE, Vol. 2, No. 3, Sep., pp.311-319, 1990 https://doi.org/10.1109/69.60794
  7. Garg, M. L., Ahson, S .I., and Guptae, D. V., 'A Fuzzy Petri-nets for Knowledge Representation and Reasoning,' Information Processing Letters, 39, pp.165-171, 1992 https://doi.org/10.1016/0020-0190(91)90114-W
  8. Konar, A., and Mandel, A. K., 'Uncertainty Management in Expert Systems Using Fuzzy Petri Nets,' IEEE Trans. on KDE, Vol. 8, No. 1, pp.96-105, 1996 https://doi.org/10.1109/69.485639
  9. Looney, G. C., 'Fuzzy Petri Nets for Rule-based Decision Making,' IEEE Trans. on SMC, Vol. 18, No. 1, Jan./Feb., 1988 https://doi.org/10.1109/21.87067
  10. Manoj, T .V., Leena, J., and Soney, B. B., 'Knowledge Representation Using Fuzzy Petri Nets-Revisited,' IEEE Trans. on KDE, Vol. 10, No. 4, Jul./Aug., pp.666-667, 1998 https://doi.org/10.1109/69.706063
  11. Sheng-Ke Yu, 'Comments on Knowledge Representation Using Fuzzy Petri Nets,' IEEE Trans. on KDE, vol. 7, No. 1, Feb., pp. 190-192, 1995 https://doi.org/10.1109/TKDE.1995.10002
  12. Yeung, D. S., and Tsang, E. C. C., 'A Mulilevel Weighted Fuzzy Reasoning Algorithm for Expert Systems,' IEEE Trans. SMC-Part A: Systems and Humans, Vol. 28, No. 2, pp. 149-158, 1998 https://doi.org/10.1109/3468.661144
  13. Murata, T., 'Petri Nets: Properties, Analysis and Applications,' Proceedings of the IEEE, Vol. 77, No. 4, April, pp.541-580, 1989 https://doi.org/10.1109/5.24143
  14. Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-hall, 1981
  15. Arnould, T., and Tano, S., 'Interval-valued Fuzzy Backward Reasoning,' IEEE Trans. Fuzzy Systems, Vol. 3, pp.425-437, 1995 https://doi.org/10.1109/91.481951
  16. Turksen, I. B., 'Interval-valued Fuzzy Sets Based on Normal Forms,' Fuzzy Sets and Systems 20, pp.191-210, 1986 https://doi.org/10.1016/0165-0114(86)90077-1
  17. Lodwick, W. A., and Jamison, K. D., 'Special Issue: Interface Between Fuzzy Set Theory and Interval Analysis,' Fuzzy Sets and Systems 135, pp.1-3, 2003 https://doi.org/10.1016/S0165-0114(02)00245-2
  18. Moore, R., and Lodwick, W. A., 'Interval Analysis and Fuzzy set theory,' Fuzzy Sets and Systems 135, pp.5-9, 2003 https://doi.org/10.1016/S0165-0114(02)00246-4
  19. Chen, Shyi-Ming, and Hsiao, Wen-Hoar, 'Bidirectional Approximate Reasoning For Rule-based Systems Using Interval-valued Fuzzy Sets,' Fuzzy Sets and Systems 113, pp.185-203, 2000 https://doi.org/10.1016/S0165-0114(98)00351-0
  20. Chen, Shyi-Ming, Hsiao, Wen-Hoar, and Jong, Hoei-Tzy, 'Bidirectional Approximate Reasoning Based on Interval-valued Fuzzy Sets,' Fuzzy Sets and Systems 91, pp.339-353, 1997 https://doi.org/10.1016/S0165-0114(97)86594-3
  21. Gorzalczany, M. B., 'A Method of Inference in Approximate Reasoning Based in Interval-valued Fuzzy Sets,' Fuzzy Sets and Systems 21, pp.1-17, 1987 https://doi.org/10.1016/0165-0114(87)90148-5
  22. Gorzalczany, M. B., 'An Interval-valued Fuzzy Inference Method - Some Basic Properties,' Fuzzy Sets and Systems 31, pp.243-251, 1989 https://doi.org/10.1016/0165-0114(89)90006-7