DOI QR코드

DOI QR Code

Delay-dependent v Filter Design for Delayed Fuzzy Dynamic Systems

시간지연 퍼지 시스템의 지연 종속 H 필터 설계


Abstract

This paper presents a delay dependent fuzzy H_\infty$ filter design method for delayed fuzzy dynamic systems. Using delay-dependent Lyapunov function, the global exponential stability and H_\infty$ performance problem are discussed. A sufficient condition for the existence of fuzzy filter is presented in terms of linear matrix inequalities(LMIs). The filter design utilize the concept of parallel distributed compensation. And the filter gains can also be directly obtained from the LMI solutions. A simulation example is given to illustrate the design procedures and performance of the proposed methods.

Keywords

References

  1. K. Tanaka, T. Ikeda, and H. O. Wang, 'Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability $H{\infty}$ control theory, and linear matrix inequalities,' IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1-13, Feb. 1996 https://doi.org/10.1109/91.481840
  2. H. O. Wang, K. Tanaka, and M. F. Griffin, 'An approach to fuzzy control of nonlineat systems: Stability and design issues,' IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14-23, Feb. 1996 https://doi.org/10.1109/91.481841
  3. X. J. Ma, Z. Q. Sun, and Y. Y. He, 'Analysis and design of fuzzy controller and fuzzy observer,' IEEE Trans. Fuzzy Syst., vol. 6, pp. 41-51, Feb. 1998 https://doi.org/10.1109/91.660807
  4. Z. Han and G. Feng, 'State feedback $H{\infty}$ controller design of fuzzy dynamic systems using LMI techniques,' in Proc. FUZZ-IEEE. Anchorage, AK, May 1988, pp. 538-544
  5. K. R. Lee, E. T. Jeung and H. B. Park, 'Robust fuzzy $H{\infty}$ control for uncertain nonlinear systems via state feedback : an LMI approach,' Fuzzy Sets and Syst., vol. 120, no. 1, pp. 123-134, 2001 https://doi.org/10.1016/S0165-0114(99)00078-0
  6. B. S. Chen, C. S. Tseng, and H. J. Uang, 'Robustness design of nonlinear dynamic sustems via fuzzy lineat control,' IEEE Trans. Fuzzy Syst., vol. 7, pp. 571-585, Oct. 1999 https://doi.org/10.1109/91.797980
  7. Y. Y. Cao and P. M. Frank, 'Analysis and synthesis of nonlineat time-delay systems via fuzzy control approach,' IEEE Trans. Fuzzy Syst., vol. 8, no. 2, pp. 200-211, April. 2000 https://doi.org/10.1109/91.842153
  8. K. R. Lee, J. H. Kim, E. T. Jeung and H. B. Park, 'Output feedback robust $H{\infty}$ control of uncertain fuzzy dynamic systems with time-varying delay,' IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 657-664, Decem. 2000 https://doi.org/10.1109/91.890325
  9. K. R. Lee, J. S. Lee, D. C. Oh and H. B. Park, 'Fuzzy $H{\infty}$ filtering for nonlinear systems with time varying delayed states,' Transaction on Control, Automation and Systems Engineering, vol. 1, no. 2, pp. 99-105, Decem. 1999
  10. K. R. Lee, H. S. Cho and H. B. Park, 'Guaranteed cost and $H{\infty} filtering for delayed fuzzy dynamic systems,' Journal of the Institute of Electronics Engineers of Korea, vol. 40, no. 2, pp. 10-18, March 2003
  11. X. Li and C. E. de Souza, 'Delay-dependent robust stability and stabilization of uncertain linear delay systems : a linear matrix inequality approach,' IEEE Trans. Automat. Contr., vol. 42, no. 8, pp. 1144-1148, August. 1997 https://doi.org/10.1109/9.618244
  12. Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, 'Delay-dependent robust stabilization of uncertain state-delayed systems,' Int. J. control., vol. 74, no. 14, pp. 1447-1455, 2001 https://doi.org/10.1080/00207170110067116
  13. M. Vidysagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1993
  14. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, 1994 https://doi.org/10.1109/JPROC.1998.735454
  15. Y. Nesterov and A. Nemirovski, Interior Point polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994
  16. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox: For Use with MATLAB, The Math Works Inc., 1995