주요 색상의 분포 블록기호를 이용한 영상검색과 유사도 피드백을 통한 이미지 검색

Image Retrieval using Distribution Block Signature of Main Colors' Set and Performance Boosting via Relevance feedback

  • 박한수 (고려대학교 산업시스템 정보공학과) ;
  • 유헌우 (연세대학교 인지과학연구) ;
  • 장동식 (고려대학교 산업시스템 정보공학과)
  • 발행 : 2004.02.01

초록

이 논문은 색상과 위치정보를 이용한 새로운 내용기반 영상검색 알고리즘을 제안한다. 이를 위해서. 질의가 주어졌을 경우, 데이타베이스의 검색공간을 줄일 목적으로 두 가지 종류의 색인 키(Key)를 제시하는데 하나는 영상의 고유한 색상 구성적 특성을 나타내는 주요 색상세트(MCS, Main Colors' Set)이고 다른 하나는 주요 색상마다의 분포 및 위치적 특성을 나타내는 분포 블록기호(DBS, Distribution Block Signature)이다. 이 두 가지 필터(Filter)를 연속적으로 적용하면 영상 데이터베이스로부터 잠재성이 높은 유사 후보 영상만을 걸러내게 된다. 이어서 보다 높은 검색성능을 얻기 위해 새롭게 제안한 쿼드모델 (Quad Modeling)과 유사도 피드백 메커니즘을 이용한다. 이 방법은 색상과 위치정보에 대한 가중치를 역동적으로 조절함으로써 검색성능을 향상시킨다. 실험을 통해서 제안된 알고리즘이 성공적으로 영상검색에 사용될 수 있음을 보인다.

This paper proposes a new content-based image retrieval algorithm using color-spatial information. For the purpose, the paper suggests two kinds of indexing key to prune away irrelevant images to a given query image; MCS(Main Colors' Set), which is related with color information and DBS (Distribution Block Signature), which is related with spatial information. After successively applying these filters to a database, we could get a small amount of high potential candidates that are somewhat similar to the query image. Then we would make use of new QM(Quad modeling) and relevance feedback mechanism to obtain more accurate retrieval. It would enhance the retrieval effectiveness by dynamically modulating the weights of color-spatial information. Experiments show that the proposed algorithm can apply successfully image retrieval applications.

키워드

참고문헌

  1. M. Swain and D. Ballard, 'Color indexing,' International Journal of Computer Vision, vol. 7, pp. 11-32, 1991 https://doi.org/10.1007/BF00130487
  2. J. R. Smith and S.-F. Chang, 'Tools and Techniques for Color Image Retrieval,' In Proc. SPIE Vol. 2670: Storage and Retrieval for Image and Video Databases IV, pp. 426-437, February 1996 https://doi.org/10.1117/12.234781
  3. Y. Rui, T. S. Huang, and S. Mehrotra, 'Relevance Feedback Techniques in Interactive Content-Based Image Retrieval,' In Proc. SPIE Vol. 3312: Storage and Retrieval for Image and Video Databases VI, pp. 25-36, January 1998 https://doi.org/10.1117/12.298455
  4. H.-W. Yoo, D.-S. Jang, S.-H. Jung, J.-H. Park, and K.-S. Song, 'Visual Information Retrieval System via Content-based Approach,' Pattern Recognition, vol 35, pp. 749-769, 2002 https://doi.org/10.1016/S0031-3203(01)00072-3
  5. L. Cinque, S. Levialdi, K.A. Olsen, A. Pellicano, 'Color-Based Image Retrieval Using Spatial Chromatic Histograms,' In. Proc. of the Multimedia Systems, vol. 2, pp. 969-973, June, 1999 https://doi.org/10.1109/MMCS.1999.778621
  6. R. Brunelli, O. Mich, 'On the Use of Histograms for Image Retrieval,' In Proc. of the Multimedia Systems, vol. 2, pp. 143-147, June, 1999 https://doi.org/10.1109/MMCS.1999.778207
  7. Greg Pass, Ramin Zabih, Justin Miller, 'Comparing Images Using Color Coherence Vectors,' In Proc. of the 4th ACM International Conference on Multimedia, pp. 65-73, November, 1996 https://doi.org/10.1145/244130.244148
  8. J. Huang, S.R. Kumar, M. Mitra, W.J. Zhu, 'Spatial Color Indexing and Applications,' In Proc. of the 6th International Conference on Computer Vision, pp. 602-607, January, 1998 https://doi.org/10.1109/ICCV.1998.710779
  9. J.R.Smith, S.F. Chang, 'Integrated Spatial and Feature Image Query,' Multimedia Systems, vol. 7, pp. 129-140, March, 1999 https://doi.org/10.1007/s005300050116
  10. L. Cinque, S. Levialdi, K.A. Olsen, A. Pellicano, 'Color-Based Image Retrieval Using Spatial- Chromatic Histograms,' In Proc. of the Multimedia Systems, vol. 2, pp. 969-973, June, 1999 https://doi.org/10.1109/MMCS.1999.778621
  11. Kian-Lee Tan, Beng Chin Ooi, Chia Yeow Yee, 'An Evaluation of Color-Spatial Retrieval Techniques for Large Databases,' Multimedia Tools and Applications, vol. 14, pp. 55-78, 2001 https://doi.org/10.1023/A:1011359607594
  12. MPEG Requirements Group, 'Overview of the MPEG-7 Standard,' ISO/IEC/JTC1/SC29/WG11, Geneva, May/June 2000
  13. I. Biederman, 'Human Image Understanding: Recent Research and a Theory,' Computer Vision, Graphics, and Image Processing, vol. 32, pp. 29-73, 1985 https://doi.org/10.1016/0734-189X(85)90002-7
  14. I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, P. N. Yianilos, 'The Bayesian Image Retrieval System, PicHunter: Theory, Implementation and Psycophysical Experiments,' IEEE Transactions on Image Processing, vol. 9, pp. 20-37, 2000 https://doi.org/10.1109/83.817596