DOI QR코드

DOI QR Code

Extraction Yield of Extruded Ginseng and Granulation of Its Extracts by Cold Extrusion-Spheronization

압출성형 수삼의 추출수율과 추출물의 저온압출 구형과립화

  • ;
  • J.P. Remon (Pharmaceutical Technology Laboratory, Faculty of Pharmaceutical Science, University of Gent)
  • 류기형 (공주대학교 식품공학과, 한약재연구센터) ;
  • Published : 2004.06.01

Abstract

The objectives of the experiment were to examine the effects of extrusion process variables on the yield of extruded ginseng extract and to determine the effect of ratio of extruded ginseng extract and microcrystalline cellulose on characteristics of spheronized granules by cold extrusion-spheronization process. Extrusion process variables observed were feed moisture (15, 22, 29%), die temperature (90 110 13$0^{\circ}C$) and screw speed (150 200, 250 rpm). The results showed that moisture content of dried ginseng significantly affected extraction yield (P<0.05). The less moisture content of the feed resulted in the higher yield of the extract. Moisture content of 15%, screw speed of 250 rpm and die temperature of 13$0^{\circ}C$ gave the highest yield of ginseng extract. Mean extraction yield of extruded ginseng using hot water extraction was greatly improved by extrusion process The extract yield of extruded ginseng was 43.5% which was higher than that of red ginseng (38.3%) and white ginseng (29.0%) produced by traditional process. It was possible to make from the mixture of microcrystalline cellulose (200 g) mixed with different concentration of 200 mL solution (0, 5, 20, 30 40 50 60% of ginseng extract with 59.2% dry solid) by using cold extrusion spheronization. When the concentration of ginseng extract Increased, the granulation yield was improved but friability and compression index were reduced. Ginseng extract such as saponin was completely released from spheronized granules in distilled water within 10 min. It can be concluded that spheroniged granule with ginseng extract could be packed in gelatin capsule since granules Possessed proper physical properties and quick release of saponin.

압출성형공법을 이용한 수삼의 전처리를 통한 추출수율의 향상과 최적조건에서 열수 추출한 인삼추출액의 첨가량을 달리하여 저온압출공정으로 제조한 구형과립의 입자분포, 마모율, 용적밀도, 진동밀도, 압축지수와 용출패턴을 결정하였다. 열수추출수율에서 수삼을 압출성형할 때 수분함량이 가장 유의적으로 영향을 미쳤다. 수분함량의 감소와 함께 스크류 회전속도가 증가할수록 압출성형 수삼의 추출수율이 크게 증가하였다. 추출수율이 최대가 되는 압출성형 공정변수는 수분함량 15%, 스크류 회전속도 250 rpm, 사출구 부위온도 13$0^{\circ}C$였다. 동일한 추출조건에서 15개 압출성형 수삼 시료의 평균 추출수율(43.5%)은 홍삼(38.3%)과 백삼(29.0%) 추출수율과 비교하여 크게 향상되었다. 저온압출공정으로 압출성형 수삼농축액(고형분함량 59.2%)의 농도를 5, 20, 30, 40, 50, 60%로 각각 증류수에 희석한 용액 200 mL과 200 g 미세결정 셀룰로오즈를 이용하여 과립화시킬 수 있는 압출성형 수삼추출액의 최대 농도는 60%였으며 추출액의 증가와 함께 입자수율의 증가, 마모율의 감소, 압출지수의 감소 등으로 입자의 물리적 특성은 구형과립을 젤라틴 캡슐에 포장하여 제품화할 수 있었다. 또한 압출성형 수삼 추출액을 포함한 구형과립으로부터 농축액 성분이 10분 이내에 쉽게 용출되므로 구형과립은 젤라틴 캡슐에 적합하다는 결론을 내릴 수가 있었다.

Keywords

References

  1. Siljestrom M, Westerlund E, Bjorck I, Holm J, Asp NG, Theander O. 1986. The various thermal processes on dietary fiber and starch content of whole grain wheat and white flour. J Cereal Sci 4: 315-319. https://doi.org/10.1016/S0733-5210(86)80035-2
  2. Hwang JK, Kim TK, Hong SI, Kim CJ. 1994. Solubilization of plant cell walls by extrusion. J Korean Soc Food Nutr 23: 358-370.
  3. Ryu GH. 1995. Treatment of Biji by extrusion-cooking and its utilization. Korea Soybean Digest 12: 43-48.
  4. Bechgaard H, Hegermann NG. 1978. Controlled-release multiple-units and single-unit doses. A literature review. Drug Dev Ind Pharm 4: 53-67. https://doi.org/10.3109/03639047809055639
  5. Vervaet C, Remon JP. 1995. Extrusion-spheronization: A literature review. Int J Pharm 116: 131-146. https://doi.org/10.1016/0378-5173(94)00311-R
  6. Alvarez L, Concheiro A, Gomez-Amoza JL, Souto C, Martinez-Pacheco R. 2002. Effect of microcrystalline cellulose grade and process variables on pellets prepared by xtrusionspheronization. Drug Dev Ind Pharm 28: 451-456. https://doi.org/10.1081/DDC-120003006
  7. Ryu GH, Kim BS, Mulvaney SJ. 2002. Optimization of extrusion process for dairy ingredient fortification of cornmeal puffed via $CO_2$ gas injection. Food Sci Biotechnol 11: 552-556.
  8. Lee KD, Lee JE, Kwon JH. 2000. Application of response surface methodology for food industry. Food Sci and Ind 33: 33-45.
  9. Lee MS. 2004. Optimization of hot-water extraction conditions for cod by product. MS Thesis. Kongju National University, Yesan. p 4-12.
  10. Keleb EI, Vermeire C, Remon JP. 2002. Continuous twin screw extrusion for wet granulation of lactose. Int J Pharm 239: 69-80. https://doi.org/10.1016/S0378-5173(02)00052-2
  11. Sung HS, Kim WJ, Yang CB. 1985. Effect of extracting temperature and ethanol concentration on nitrogeneous constituents of red ginseng extract. Korean J Ginseng Sci 9: 95-103.
  12. Sung HS, Kim NM, Park MH, Yoon SK, Yang CB. 1985. Effect of extracting conditions on some factors affecting the sugar composition of red ginseng extract. Korean J Ginseng Sci 9: 104-111.
  13. Yi YS, Chang KS. 2002. Effect of red papper particle size on oleoresin extraction rate from red papper. Food Eng Prog 6: 263-267.
  14. Harrison PJ, Newton JM, Rowe RC. 1987. The application of capillary rheometry to the extrusion of wet powder mass. Int J Pharma 35: 235-242. https://doi.org/10.1016/0378-5173(87)90135-9
  15. Liu J, Zhang F, McGinity JW. 2001. Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride by hot-melt extrusion. Eup J Pharm Biopharma 52: 181-190. https://doi.org/10.1016/S0939-6411(01)00162-X
  16. Kim DS. 2004. Effect of extrusion conditions on release of ingredients in normal and high-amylose cornstarch extrudates. MS Thesis. Kongju National University, Yesan. p 4-26.

Cited by

  1. Effects of Extrusion and Enzyme Treatment on Extraction of β-Glucan from Agaricus blazei Murill vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.380
  2. Influences of Die Temperature and Repeated Extrusion on Physical Properties of Extruded White Ginseng vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.921
  3. Physiochemical Characteristics of Extruded Angelica gigas Nakai Depending on the Extrusion Processing Parameter vol.22, pp.5, 2014, https://doi.org/10.7783/KJMCS.2014.22.5.349
  4. Changes in physicochemical characteristics and antioxidant activities of Jerusalem artichoke tea infusions resulting from different production processes vol.23, pp.6, 2014, https://doi.org/10.1007/s10068-014-0257-3
  5. 압출성형 공정변수에 따른 건조수삼과 백삼 압출성형물의 침출속도 및 침출물 특성 vol.34, pp.2, 2004, https://doi.org/10.3746/jkfn.2005.34.2.306
  6. 사출구 온도와 구조에 따른 압출성형 백삼의 추출 특성 vol.34, pp.4, 2005, https://doi.org/10.3746/jkfn.2005.34.4.544
  7. 압출성형 온도가 백삼과 홍삼의 팽화에 미치는 영향 vol.34, pp.7, 2004, https://doi.org/10.3746/jkfn.2005.34.7.1109
  8. 압출성형 산삼배양근의 이화학적 성질 및 침출특성의 비교 vol.37, pp.8, 2004, https://doi.org/10.3746/jkfn.2008.37.8.1018
  9. Comparison of Physicochemical Properties of Extruded Ginseng Samples vol.13, pp.4, 2004, https://doi.org/10.3746/jfn.2008.13.4.299
  10. 압출성형 산삼배양근의 발효 특성 vol.37, pp.12, 2008, https://doi.org/10.3746/jkfn.2008.37.12.1654
  11. 압출성형 백삼추출물의 화학적 조성 및 항산화 활성 vol.38, pp.7, 2004, https://doi.org/10.3746/jkfn.2009.38.7.946
  12. Monitoring of Chemical Changes in Explosively Puffed Ginsengvand the Optimization of Puffing Conditions vol.34, pp.1, 2004, https://doi.org/10.5142/jgr.2010.34.1.059
  13. Changes in Ginseng Components Using the Pilot Plant Twin Screw Extruder Process vol.23, pp.4, 2004, https://doi.org/10.13050/foodengprog.2019.23.4.297