• 제목/요약/키워드: $tRNA_{1}^{}$ Gln/

검색결과 4건 처리시간 0.017초

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • 제42권2호
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.

박테리오파지 T4 tRNA의 프로세싱에 관여하는 몇가지 RNase들 (Some RNases Involved in the Processing of Bacteriophage T4 RNA)

  • 고동성
    • 대한화학회지
    • /
    • 제26권6호
    • /
    • pp.396-402
    • /
    • 1982
  • RNase Ⅲ, RNase E, 및 RNase P가 각각 홀로 또는 복합적으로 결핍되는 E. coli 돌연변이 균주들 내에서의 박테리오파지 T4 tRNA의 전구 RNA로 부터의 합성을 연구하였다. RNase E$^-$균주에서는 9S RNA로 볼 수 있는 한 RNA 띠가 축적되었으며 RNase$ P^-$균주에서는 6S 이중띠의 하부띠가 축적되었다. RNase Ⅲ$^-$균주에서는 T4 tRNA 유전인자 떼(cluster)에 의하여 코드되는 (coded) tRNA$^{Gln}$의 생성이 심하게 억제되며 T4 DNA에 의하여는 코드되지만 T4 tRNA 유전인자 떼에 의하여 코드 되는 6S 이중 띠의 상부 띠는 RNase Ⅲ$^+$균주의 경우에 비하여 더 크게 축적된다. 그러나 6S 이중 띠의 상부 띠 RNA와 tRNA$^{Gln}$ 사이에는 precursor-product 관계가 없다고 판단되며 RNase Ⅲ이 precursor RNA을 가수분해 절단 한다고 생각하는 개념을 지지할만한 근거가 없음을 지적할 수 있다.

  • PDF

대장균에서 Bacillus subtilis glutamyl-tRNA synthetase의 과발현 및 정제 (Overexpression and Purification of Bacillus subtilis Glutamyl-tRNA Synthetase in Escherichia coli)

  • 오종신;윤장호;홍광원
    • Applied Biological Chemistry
    • /
    • 제45권4호
    • /
    • pp.190-194
    • /
    • 2002
  • Bacillus subtilis의 glutamyl-tRNA synthetase(GluRS)는 대장균에서 발현될 때 숙주세포의 $tRNA_1^{Gln}$에 glutamate를 잘못 아실화하여 독성을 나타내는 것으로 추정되고 있다. 이러한 B. subtilis GluRS를 대장균에서 과발현 시키기 위하여 B. subtilis 168 균주의 chromosomal DNA에서 GluRS의 유전자(gltX)를 PCR을 이용하여 증폭하고 T7 promoter에 의해 발현이 조절되는 pET11a expression vector에 클로닝하였다. 이 재조합된 pEBER plasmid DNA로 T7 RNA polymerase를 갖는 대장균 NovaBlue(DE3)에 형질전환하였다. 형질전환된 대장균에 IPTG를 처리하여 과량 생성된 GluRS 단백질은 ammonium sulfate 분별침전 후 EPLC를 이용한 Source Q column anion exchange chromatography, Superdex 200 column gel filtration, Mono Q column anion exchange chromatography로 정제하였다. 정제된 B. subtilis의 GluRS 분자량은 약 55 kDa이었으며 효소의 활성도는 조효소액에 비해 18배로 증가하였다.

우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석 (Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea)

  • 정승룡
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1995년도 Proceedings of special lectures on Molecular Biological Approaches to Plant Disease National Agricultural Science and Technology Institute Suwon, Korea
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF