Factors Influencing Preferential Utilization of RNA Polymerase Containing Sigma-38 in Stationary-Phase Gene Expression in Escherichia coli

  • Kim, Eun-Young (Genome Research Center for Enteropathogenic Bacteria, and Dept. of Microbiology, Chonnam National University Medical College) ;
  • Shin, Min-Sang (Genome Research Center for Enteropathogenic Bacteria, and Dept. of Microbiology, Chonnam National University Medical Colleg) ;
  • Rhee, Joon-Haeng (Genome Research Center for Enteropathogenic Bacteria, and Dept. of Microbiology, Chonnam National University Medical Colleg) ;
  • Hyon E. Choy (Genome Research Center for Enteropathogenic Bacteria, and Dept. of Microbiology, Chonnam National University Medical College)
  • Published : 2004.06.01

Abstract

In order to understand the molecular basis of selective expression of stationary-phase genes by RNA polymerase containing$\sigma$$\^$38/ (E$\sigma$$\^$38/) in Escherichia coli, we examined transcription from the stationary-phase promoters, katEP, bo1AP, hdeABP, csgBAP, and mcbP, in vivo and in vitro. Although these pro-moters are preferentially recognized in vivo by E$\sigma$$\^$38/, they are transcribed in vitro by both E$\sigma$$\^$38/ and E$\sigma$$\^$70/ containing the major exponential $\sigma$, $\sigma$$\^$70/. In the presence of high concentrations of glutamate salts, how-ever, oldy E$\sigma$$\^$38/ was able to efficiently transcribe from these promoters, which supports the concept that the promoter selectivity of $\sigma$$\^$38/-containing RNA polymerase is observed only under specific reaction con-ditions. The examination of 6S RNA, which is encoded by the ssr1 gene in vivo, showed that it reduced E$\sigma$$\^$70/ activity during the stationary phase, but this reduction of activity did not result in the elevation of E$\sigma$$\^$38/ activity. Thus, the preferential expression of stationary-phase genes by E$\sigma$$\^$38/ is unlikely the con-sequence of selective inhibition of E$\sigma$$\^$70/ by 6S RNA.

Keywords

References

  1. EMBO J. v.8 Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene Aldea, M.;T. Garrido;C. Hernandez-Chico;M. Vicente;S.R. Kushner
  2. EMBO J. v.9 Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters Aldea, M.;T. Garrido;J. Pla;M. Vicente
  3. Mol. Microbiol. v.13 Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by ${\sigma}^{70}$ in the absence of the nucleoid-associated protein H-NS Arnqvist, A.;A. Olsen;S. Normark https://doi.org/10.1111/j.1365-2958.1994.tb00493.x
  4. Mol. Microbiol. v.39 What makes an Escherichia coli promoter ${\sigma}^s$ dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of ${\sigma}^S$. Becker, G;R. Hengge-Aronis https://doi.org/10.1111/j.1365-2958.2001.02313.x
  5. J. Bacteriol. v.143 Positive selection for loss of tetracycline resistance Bochner, B.R.;H.C. Huang;G.L. Schieven;B.N. Ames
  6. Mol. Microbiol.. v.35 Involvement of differential efficiency of transcription by E${\sigma}^S$ and E${\sigma}^{70}$ RNA polymerase holoenzymes in growth phase regulation of the Escherichia coli osmE promoter Bordes. P.;F. Repolia;A. Kolb;C. Gutierrez https://doi.org/10.1046/j.1365-2958.2000.01758.x
  7. Proc. Natl. Acad. Sci. USA v.89 Control of gal transcription through DNA looping: inhibition of the initial transcribing complex Choy, H.E.;S. Adhya https://doi.org/10.1073/pnas.89.23.11264
  8. Proc. Natl. Acad. Sci. USA v.90 RNA polymerase idling and clearance in gal promoters: use of supercoiled minicircle DNA template made in vivo Choy, H.E.;S. Adhya https://doi.org/10.1073/pnas.90.2.472
  9. Genes Cells v.7 The interaction between${\sigma}^S$, the stationary phase sigma factor, and the core enzyme of Escherichia coli RNA polymerase Colland, F.;N. Fujita;A. Ishihama;A. Kolb https://doi.org/10.1111/j.1432-1033.1969.tb19595.x
  10. Mol. Microbiol. v.16 Promoter selectivity control of Escherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by E${\sigma}^D$ and E${\sigma}^S$ holoenzymes Ding, Q.;S. Kusano.;M. Villarejo;A. Ishihama https://doi.org/10.1111/j.1365-2958.1995.tb02427.x
  11. Mol. Microbiol. v.21 A consensus structure for ${\sigma}^S$-dependent promoters Espinosa-Urgel, M.;C. Charmizo.; A. Tormo https://doi.org/10.1111/j.1365-2958.1996.tb02573.x
  12. Infect. Immun. v.18 Hemagglutination of human group A erythrocytes by enterotoxigenic Escherichia coli isolated from adults with diarrhea: correlation with colonization factor Evans, D.G.;D.J. Evans, Jr.;W. Tjoa
  13. Mol. Microbiol. v.42 Promoter recognition and discrimination by E${\sigma}^S$ sigma S RNA polymerase Gaal, T,;W. Ross; S.T. Estrem;L.H. Nguyen;R.R. Burgess;R.L. Gourse https://doi.org/10.1046/j.1365-2958.2001.02703.x
  14. Cold Spring Harb or Symp. Quant. Biol. The functional and regulatory roles of sigma factors in transcription Gross, C.A.;C. Chan;A. Dombroski;T. Gruber;M.Sharp.J. Tupy;B. Young
  15. Mol. Microbiol. v.18 Expression of two csg operons is required for production of fibronectin- and congo red-blinding curil polymers in Escherichia coli K-12 Hammer, M.;A. Anqvisit;Z. Bian; A. Olsen;S. Normark https://doi.org/10.1111/j.1365-2958.1995.mmi_18040661.x
  16. J. Bacteriol. v.175 Osmotic regulation of rpoS-dependent genes in Escherichia coli Hengge-Arnois, R.;R. Lange;N. Henneberg;D. Fischer
  17. Mol. Microbiol. v.21 Back to log phase: ${\sigma}^S$ as a global regulator in the osmotic of gene expression in Escherichia coli Hengge-Arnois, R. https://doi.org/10.1046/j.1365-2958.1996.511405.x
  18. Curr. Opin. Microbiol. v.2 Interplay of global regulators and cell physiology in the general stress reponse of Escherichia coli Hengge-Aronis, R https://doi.org/10.1016/S1369-5274(99)80026-5
  19. Genes Cells v.4 Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival Ishihama, A. https://doi.org/10.1046/j.1365-2443.1999.00247.x
  20. Annu. Rev. Microbiol v.54 Functional modulation of Escherichia coli RNA polymerase Ishihama. A. https://doi.org/10.1146/annurev.micro.54.1.499
  21. J. Bacteriol. v.172 Starvationinduced cross protection against osmotic challenge in Escherichia coli Jenkins, D.E.;S.A. Chaisson;A. Matin
  22. J. Bacteriol v.177 Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of ${\sigma}^{70}$ and ${\sigma}^{38}$ Jishage, M.;A. Ishihama
  23. J. Bacteriol. v.183 Mapping of the Rsd contact site on the ${\sigma}^{70}$ subunit of Escherichia coli RNA polymerase Jishage, M.;D. Dasgupta;A. Ishihama https://doi.org/10.1128/JB.183.9.2952-2956.2001
  24. Nucl. Acids Res. v.23 Selectivity of the Escherichia coli RNA polymerase for overlapping promoters and ability to support CRP activation Kolb. A.;D. Kotlarz;S. Kusano;A. Ishihama https://doi.org/10.1093/nar/23.5.819
  25. Annu. Rev. Microbiol. v.47 The stationary phase of the bacterial life cycle Kolter, R.;D.A. Siegele;A. Tormo https://doi.org/10.1146/annurev.mi.47.100193.004231
  26. Genes Cells v.2 Functional interaction of Escherichia coli RNA polymerase with inorganic polyphosphate Kusano, S.;A. Ishihama https://doi.org/10.1046/j.1365-2443.1997.13203301320330.x
  27. J. Bacteriol. v.179 Stimulatory effect of trehalose on the formation and activity of Escherichia coli RNA polymerase E${\sigma}^{38}$ holoenzyme Kusano, S.;A. Ishihama
  28. J. Biol. Chem. v.271 Promoter selectivity of Escherichia coli RNA polymerase E${\sigma}^{70}$ and E${\sigma}^{38}$ holoenzymes: Effect of DNA supercoiling Kusano, S.;Q. Ding;N. Fujita;A. Ishihama https://doi.org/10.1074/jbc.271.4.1998
  29. J. Bacteriol. v.173 Growth phase-regulated expression of bolA and morphololgy of stationary-phase Escherichia coli cells are controlled by the novel $\sigma$ factor${\sigma}^S$ Lange, R.;R. Hengge-Aronis
  30. J. Biol. Chem. v.276 ${\sigma}^{38}$ (rpoS) RNA polymerase promoter engagement via -10 region nucleotides Lee, S.J.;J.D. Gralla https://doi.org/10.1074/jbc.M102886200
  31. Proc. Natl. Acad. Sci. USA v.98 A Lim, H.M.;H.J. Lee;S. Roy;S. Adhya https://doi.org/10.1073/pnas.261517398
  32. Nucl. Acids Res. v.28 Sigma competition: Comparison of binding affinity to the core RNA polymerase among seven E.coli sigma subunits Maeda, H.;N. Fujita;A. Ishihama
  33. Mol. Microbiol. v.43 Fractionation of Escherichia coli cell populations at different stages during growth transition to stationary phase Makinoshima, H.;A. Nishimura;A. Ishihama https://doi.org/10.1046/j.1365-2958.2002.02746.x
  34. Mol. Microbiol. v.27 Genetic analysis of the stationary phase-induced mcb operon promoter in Escherichia coli Mao, W.;D.A. Siegele https://doi.org/10.1046/j.1365-2958.1998.00690.x
  35. Experiments in molecular genetics Miller, J.H.
  36. J. Bacteriol. v.172 Regulation of transcription of katE and katF in Escherichia coli Mulvey. M.R.;J. Switala;A. Borys;P.C. Loewen
  37. Nucl. Acids Res. v.17 Nucleotide sequence of katF of Escherichia coli suggets KatF protein is a novel ${\sigma}$ transcription factor Mulvey, M.R.;P.C. Loewen https://doi.org/10.1093/nar/17.23.9979
  38. Biochemistry v.32 In vitro functional characterization of overproduced Escherichia coli katFlrpoS gene product Nguyen, L.H.;D.B. Jensen;N.E. Thompson;D.R. Gentry;R.R. Burgess https://doi.org/10.1021/bi00092a021
  39. Anal. Biochem. v.63 Complications in the simplest cellular enzyme assay: lysis of Escherichia coli for the assay of beta-galactosidase Putnam, S.L.;A.L. Koch https://doi.org/10.1016/0003-2697(75)90357-7
  40. Nucl. Acids Res. v.23 Promoter determinants for Escherichia coli RNA polymerase holoenzyme containing ${\sigma}^{38}$ (the rpoS gene product) Tanaka, K.;S. Kusano;N. Fujita;A. Ishihama;H. Takahashi https://doi.org/10.1093/nar/23.5.827
  41. Biochim. Biophys. Acta. v.1352 Identification and analysis of the rpoS-dependent promoter of katE, Encoding catalase HPⅡ in Escherichia coli Tanaka, K.;K. Handel;P.C. Loewen;H. Takahashi https://doi.org/10.1016/S0167-4781(97)00044-4
  42. Cell v.38 Control of ColE1 plasmid replication: the process of binding of RNA Ⅰto the primer transcript Tomizawa, J. https://doi.org/10.1016/0092-8674(84)90281-2
  43. Cell v.101 6S RNA regulates E. coli RNA polymerase activity Wassarman, K.M.;G. Storz https://doi.org/10.1016/S0092-8674(00)80873-9
  44. J. Bacteriol. v.178 Sequences in the -35 region of Escherichia coli rpoS-dependent genes promote transcription by E${\sigma}^S Wise, A.;R. Brems;V. Ramakrichnan;M. Villarejo
  45. J. Bacteriol. v.174 Molecular characterization of the promoter of osmY, an rpoS-dependent gene Yim, H.H.;M. Villarejo
  46. J. Bacteriol. v.175 Physical map location of a set of Escherichia coli genes (hde) whose expression is affected by the nucleoid protein H-NS Yoshida, T.;C. Ueguchi;T. Mizuno
  47. Mol. Gen. Genet. v.192 Physical and generical anaysis of bacteriophage T4 generalized transduction Young, K.K.;G. Edlim https://doi.org/10.1007/BF00327673
  48. Cell v.86 GSAPing for life in station ar phase Zambrano, M.M.;R. Kolter https://doi.org/10.1016/S0092-8674(00)80089-6