철 광물에 의한 헥사클로에탄의 환원적 분해: 반응 속도 연구

Reductive Degradation of hexachloroethane by using Iron Minerals: Kinetics studies

  • 김성국 (계명대학교 환경대학 환경과학과) ;
  • 박상원 (계명대학교 환경대학 환경과학과)
  • Kim, Sung-Kuk (Faculty of Environmental Science and Engineering Keimyung University) ;
  • Park, Sang-Won (Faculty of Environmental Science and Engineering Keimyung University)
  • 발행 : 2004.06.01

초록

수용액상에서 철광물질과 유기 용매간의 반응 속도는 여러 반응인자에 따라 반응 속도 실험을 하였다 F $e^{0}$ , FeS와 Fe $S_2$를 반응 매개물로 $C_2$C $l_{6}$에 대한 반응에서 F $e^{0}$ > FeS > Fe $S_2$ 순으로 분해반응 속도가 빠르게 나타났다. 철 광물질에 대해서 $C_2$C $l_{6}$, CHC $l_{5}$ , $C_2$C $l_4$, CHC $l_3$에 대한 분해 반응 속도는 염소 치환기가 적을수록 환원반응 속도는 느리게 일어난다. 환원 반응 속도는 pH, 교반 속도, 반응 온도와 비표면적에 의존적임을 확인하였다. 1,10-phenanthroline과 EDTA화합물은 고립전자 쌍을 가진 2개의 질소 원자에 의해 형성된 두 자리 킬레이트 작용기가 철 표면에 흡착하며 전자 이동 속도를 증가시켜 분해 반응 속도를 증가시킨다. 즉 분자 $\pi$* 오비탈을 가진 질소원자는 비어있는 금속에 비편재(delocalized)되어 전자이동 속도를 증가시킨다. 그리고 hydroquinone은 반응 속도에 영향을 주지 않았다. 자연계에 존재하는 카올리나이트는 철 광물질의 부식을 유발시켜 분해 반응속도를 증가시켰다. 반면 F $e^{2+}$와 S $O_4$$^{2-}$ 와 같은 이온은 반응속도에 영향을 주지 않았다.

Kinetic characteristics dependent on several factors such as iron mineral and organic solvents were investigated. When F $e^{0}$ , FeS and Fe $S_2$ were used as mediators, minerals affecting reaction rate were in the following order : $Fe_{0}$ 0/ > FeS > $FeS_2$ when in contact $C_2$C $l_{6}$ . The more chloride substituted, the higher reaction rate were observed. The reaction rates were dependent on pH, shaking rate, temperature and specific surface area. 1, 10-phenanthroline and EDTA degradation rates were fast, indicating that they adsorbed on the surface of the iron which makes the electron transfer reaction easy. Nitrate which has $\pi$* orbital of molecular can increase electron transfer rate because it is delocalized in its entity. The reaction rates were not affected by hydroquinone. Degradation rates were much enhanced with naturally occurring kaolinite because of the surface corrosion of Fe mineral. However, The reaction rate was not affected by F $e^{2+}$ or S $O_4$$^{2-}$ presented in solution.n.

키워드

참고문헌

  1. Judith, L.S., Suflita, J.M., and Russell, H.H., 'Reductive Dehalogenation of Organic Contaminants in Soils and Ground water', EPAl540/4-90/054, January, (1991)
  2. Fan, A.M., 'TricWoroethylene : water contamination and health risk assessment', pp. 55-92. In Ware, G.W., Reviews of Environmental Contamination and Toxicology. SprangerVerlag, New York, (1988)
  3. Barbash, J., and Roberts, P.V., 'Volatile organic chemical contamination of ground water resources in the U. S.', J. Water Poll. Control Feder., 58, pp. 343-348 (1986)
  4. Sweeny, K.H., 'Water Reuse Symposium', American Water Works Association Research Foundation, Denver, 2, pp. 1487-1497 (1989)
  5. Gillham, R.W, and O'Hannesin, S.F., 'Enhanced degradation of halogenated aliphatics by zero-valent iron', J. Ground Water, 32(6), pp. 958-967 (1994) https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
  6. Schwarzenbach, R.P., and Gschwend. P.M., In Aquatic Chemical Kinetics.; Stumm, W., Ed., John Wiley & Sons, Inc, New York, pp. 224-225 (1990)
  7. 김성국, '철화합물에 의한 유독성 유기화합물의 환원적 분해 반응에 관한 연구', 계명대학교 박사학위논문, pp. 58-59(2000)
  8. Butler, E.C., and Hayes, K.F., 'Kinetics of the Transformation of Halogenated Aliphatic Compounds by Iron Sulfide', Environ. Sci. Technol., 34(3), pp. 541-549 (2000) https://doi.org/10.1021/es9910107
  9. Vogel, T.M., Criddle, C.S., and McCarty, P.L., 'Transformations of halogenated aliphatic compounds', Environ. Sci. Technol., 21(8), pp. 722-736 (1987) https://doi.org/10.1021/es00162a001
  10. Stumm, W., Chemistry of the Solid-Water Interface, John Wiley & Sons, Inc,: New York, pp. 319-320 (1998)
  11. Robert, M.P., and Robert, W.P., Environ. Sci. Technol', 31(3), pp. 2240-2251 (1995)