Copolymerizations of Ethylene with 1-Hexene over ansa-Metallocene Diamide Complexes

  • Kim, Il (Division of Chemical Engineering, Pusan National University) ;
  • Kwak, Chang-Hun (Division of Chemical Engineering, Pusan National University) ;
  • Son, Gi-Wan (Division of Chemical Engineering, Pusan National University) ;
  • Kim, Jae-Sung (Division of Chemical Engineering, Pusan National University) ;
  • Sinoj Abraham (Division of Chemical Engineering, Pusan National University) ;
  • Bijal K. B. (Division of Chemical Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Division of Chemical Engineering, Pusan National University) ;
  • Kim, Bu-Ung (Division of Chemical Engineering, Pusan National University) ;
  • Jo, Nam-Ju (Division of Chemical Engineering, Pusan National University)
  • 발행 : 2004.06.01

초록

We have performed copolymerizations of ethylene with 1-hexene using various ansa-metallocene compounds in the presence of the non-coordinative [CPh$_3$][B(C$\_$6/F$\_$5/)$_4$ion pair as a cocatalyst. The metallocenes chosen for this study are isospecific metallocene diamide compounds, rac-(EBI)Zr(NMe$_2$)$_2$ [1, EBI = ethylene-l ,2-bis(1-indenyl)], rac-(EBI)Hf(NMe$_2$)$_2$ (2), rac-(EBI)Zr(NC$_4$H$\_$8/)$_2$ (3), and rac-(CH$_3$)$_3$Si(1-C$\_$5/H$_2$-2-CH$_3$-4-$\^$t/C$_4$H$\_$9/)2 Zr(NMe$_2$)$_2$ (4), and syndiospecific metallocene dimethyl compounds, ethylidene(cyclopentadienyl)(9-fluorenyl) ZrMe$_2$ [5, Et(Flu)(Cp )ZrMe$_2$] and isopropylidence (cyclopentadienyl)(9-fluorenyl)ZrMe$_2$ [6, iPr(Flu)(Cp)ZrMe$_2$]. The copolymerization rate decreased in the order 4 >1-3>2 >5>6. The reactivity of I -hexene decreased in the order 2 >6>1- 3-5> 4. We characterized the microstructure of the resulting poly(ethylene-co-l-hexene) by $\^$l3/C NMR spectroscopy and investigated various other properties of the copolymers in detail.

키워드

참고문헌

  1. Makromol. Chem. v.193 T. Uozumi;K. Soga https://doi.org/10.1002/macp.1992.021930401
  2. Macromol. Chem. Phys. v.196 R. Quijada;J. Dupont;M. S. Miranda;S. R. B. Lacerda;G. B. Galland https://doi.org/10.1002/macp.1995.021961210
  3. Macromol. Chem. Phys. v.197 R. Quijada;G. B. Raul;R. S. Mauler https://doi.org/10.1002/macp.1996.021971003
  4. Mater. Lett. v.31 K. J. Chu;T. H. Park https://doi.org/10.1016/S0167-577X(96)00240-6
  5. J. Mol. Catal., A: Chem. v.105 C. Bergemann;R. Cropp;G. Luft https://doi.org/10.1016/1381-1169(95)00202-2
  6. Z. Naturforsch. v.50b P. H. Muhlenbrock;G. Fink
  7. J. Appl. Polym. Sci. v.64 R. Quijada;R. Rojas;R. S. Mauler;G. B. Galland;R. B. Scipioni https://doi.org/10.1002/(SICI)1097-4628(19970627)64:13<2567::AID-APP10>3.0.CO;2-X
  8. Makromol. Chem. Rapid Commun. v.14 J. C. W. Chien;B. Xu https://doi.org/10.1002/marc.1993.030140209
  9. Macromolecules v.30 R. Leino;J. G. Luttikhedde;L. P. Hendrik;C. E. Wilen;R. Sjoeholm;A. Lehtonen;J. V. Seppaelae;J. H. Maesman https://doi.org/10.1021/ma970041o
  10. Makromol. Chem. v.194 K. Soga;M. Kaminaka https://doi.org/10.1002/macp.1993.021940621
  11. Polymer v.25 K. Keiichiro;Y. Sakae;M. Yasumitsu https://doi.org/10.1016/0032-3861(84)90199-X
  12. J. Polym. Sci. Part A: Polym. Chem. v.35 J. Suhm;M. J. Schneider;R. Mulhaupt https://doi.org/10.1002/(SICI)1099-0518(199703)35:4<735::AID-POLA18>3.0.CO;2-O
  13. Macromolecules v.27 J. Koivumaki;G. Fink;J. V. Seppala https://doi.org/10.1021/ma00100a004
  14. Macromol. Chem. Phys. v.197 W. Kaminsky
  15. Polym. Eng. Sci. v.42 I. Kim;K. T. Kim;M. H. Lee;Y. Do;H. Chung
  16. Macromolecules v.29 I. Kim;R. F. Jordan https://doi.org/10.1021/ma951230e
  17. Polym. Bull. v.39 I. Kim;R. F. Jordan https://doi.org/10.1007/s002890050155
  18. J. Macromol. Sci., Pure & Appl. Chem. v.A35 I. Kim
  19. J. Appl. Polym. Sci. v.71 I. Kim;J. Zhou
  20. WO 9532979 R. F. Jordan;G. M. Diamond
  21. Organometallics v.14 G. M. Diamond;S. Rodewald;R. F. Jordan https://doi.org/10.1021/om00001a003
  22. Organometallics v.15 G. M. Diamond;R. F. Jordan;J. L. Petersen https://doi.org/10.1021/om960103j
  23. J. Am. Chem. Soc. v.118 G. M. Diamond;R. F. Jordan;J. L. Petersen https://doi.org/10.1021/ja9604830
  24. Organometallics v.15 J. N. Christopher;G. M. Diamond;R. F. Jordan;J. L. Petersen https://doi.org/10.1021/om960104b
  25. Organomet. Chem. v.342 S. Collins;B. A. Kuntz;N. J. Taylor;D. G. Ward https://doi.org/10.1016/0022-328X(88)80041-X
  26. Organometallics v.10 R. B. Grossman;R. A. Doyle;S. L. Buchwald https://doi.org/10.1021/om00051a047
  27. U. S. Patent 5004820 S. L. Buchwald;R. B. Grossman
  28. J. Organomet. Chem. v.369 H. Wiesenfeldt;A. Peinmuth;E. Barsties;K. Everts;H. H. Brintzinger https://doi.org/10.1016/0022-328X(89)85186-1
  29. Polym. Bull. v.34 G. B. Galland;R. S. Mauler;S. C. de Menezes;R. Quijada https://doi.org/10.1007/BF00423357
  30. Chem. Eng. News J. Chowdhury;S. Moore
  31. Proceedings of the International Symposium on Catalyst Design for Talior-made Polyolefins Studies in Surface Science and Catalyst A. Razavi;L. Peters;L. Nafpliotis;J. L. Atwood;K. Soga(ed.);M. Terano(ed.)
  32. J. Am. Chem. Soc. v.110 J. A. Ewen;R. L. Jones;A. Razavi;J. D. Ferraa https://doi.org/10.1021/ja00226a056
  33. Makromol. Chem. v.190 K. Soga https://doi.org/10.1002/macp.1989.021900508
  34. ASTM D 5017-91 Determination of Linear Low Density Polyethylene Composition by Carbon-13 Nuclear Magnetic Resonance ASTM
  35. Macromolecules v.15 E. Hsieh;J. C. Randall https://doi.org/10.1021/ma00233a036
  36. Rev. Macromol. Chem. Phys. v.C29 J. C. Randall
  37. MetCon 95 P. J. T. Tait;M. G. K. Monteiro
  38. Makromol. Chem. v.194 N. Herfert;P. Montag;G. Fink https://doi.org/10.1002/macp.1993.021941120
  39. Makromol. Chem. v.193 W. Kaminsky;R. Engehausen;K. Zoumis;W. Spaleck;J. Rohrmann https://doi.org/10.1002/macp.1992.021930708
  40. New J. Chem. v.14 W. Spaleck;M. Antberg;V. Dolle;R. Klein;J. rohrmann;A. Winter
  41. J. Polym. Sci. Polym., chem., Ed. v.23 E. Gianetti;G. M. Nicoletti;R. Mazzochi https://doi.org/10.1002/pol.1985.170230805
  42. J. Am. Chem. Soc. v.109 J. A. Ewen;L. Haspeslagh;J. L. Atwood;H. Zhang https://doi.org/10.1021/ja00255a068
  43. Makromol. Chem. Rapid Commun. v.9 A. Ahlers;W. Kaminsky https://doi.org/10.1002/marc.1988.030090702
  44. Polym. Bull. v.20 D. T. Mallin;M. D. Rausch;J. C. W. Chien https://doi.org/10.1007/BF01153432
  45. Angew. Makromol. Chem. v.249 P. Starck;C. Lehtinen;B. Lofgren https://doi.org/10.1002/apmc.1997.052490108
  46. Polym. Int. v.40 P. Starck
  47. J. Appl. Polym. Sci. v.58 J. Minick;A. Moet;A. Hiltmer;E. Baer;S. P. Chum https://doi.org/10.1002/app.1995.070580819
  48. J. Polym. Sci., Part B: Polym. Phys. v.34 S. Bensason;J. Minick;A. Moet;S. Chum;A. Hiltner;E. Baer https://doi.org/10.1002/(SICI)1099-0488(199605)34:7<1301::AID-POLB12>3.0.CO;2-E