References
- Cell. v.87 NF-kB: Ten years after Baeuerle,P.A.;D.Baltimore https://doi.org/10.1016/S0092-8674(00)81318-5
- Infect Immun. v.71 Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages Bandyopadhyay,P.;B.Byrne;Y.Chan;M.S.Swanson;H.M.Steinman https://doi.org/10.1128/IAI.71.8.4526-4535.2003
- Mol. Microbiol. v.47 Siderophore-mediated cell signalling in Pseudomonas aeruginosa: Divergent pathways regulate virulence factor production and siderophore receptor synthesis Beare,P.A.;R.J.For;L.W.Martin;I.L.Lamont https://doi.org/10.1046/j.1365-2958.2003.03288.x
- Nature v.237 Inducible antibacterial defence system in Drosophila Boman,H.G.;I.Nilsson;B.Rasmuson https://doi.org/10.1038/237232a0
- J.Bacteriol. v.184 Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system Cosson,P.;L.Zulianello;O.Join-Lambert;F.Faurisson;L.Gebbie;M.Benghezal;C. Van Delden;L.K.Curty;T.Kohler https://doi.org/10.1128/JB.184.11.3027-3033.2002
- J. Bacteriol. v.183 Drosophila model host for Pseudomanas aeruginosa infection D'Argenio,D.A.;L.A.Gallagher;C.A.Berg;C.Manoil https://doi.org/10.1128/JB.183.4.1466-1471.2001
- Am. J. Hum. Genet. v.62 Drosophila immune responses as models for human immunity Dushay,M.S.;E.D.Eldon https://doi.org/10.1086/301694
- Microb. Pathog. v.32 Role an activation of type Ⅲ secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing Fauvarque,M.O.;E.Bergeret;J.Chabert;D.Dacheux;M.Satre;I.Attree https://doi.org/10.1006/mpat.2002.0504
- Infect. Immun. v.71 DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors Ha,U.H.;Y.Wang;S.Jin https://doi.org/10.1128/IAI.71.3.1590-1595.2003
- Mol. Cell. v.4 Relish, a central factor in the control of humoral but not cellular immunity in Drosophila Hedengren,M.;B.Asling;M.Dushay;I.Ando;S.Ekengren;M.Wihlborg;D.Hultmark https://doi.org/10.1016/S1097-2765(00)80392-5
- Adv. Microb. Physiol. v.46 The extracytoplasmic function (ECF) sigma factors Helmann,J.D. https://doi.org/10.1016/S0065-2911(02)46002-X
- Science v.284 Phylogenetic perspectives in innate immunity Hoffmann,J.A.;F.C.Kafatos;C.A.Janeway;R.A.Ezekowitz https://doi.org/10.1126/science.284.5418.1313
- Science v.296 Pseudomonas-Candida interactions: An ecological role for virulence factors Hogan,D.A.;R.Kolter https://doi.org/10.1126/science.1070784
- J. Bacteriol. v.182 Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects Jander,G.;L.G.Rahme;F.M.Ausubel https://doi.org/10.1128/JB.182.13.3843-3845.2000
- J. Biol. Chem. v.260 Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron Kim,K.;S.G.Rhee;E.R.Stadtman
- J. Microbiol. Biotechnol. v.13 Genome diversification by phage-derived genomic islands in Pseudomonas aeruginosa Kim,S.H.;K.B.Lee;J.S.Lee;Y.H.Cho
- Nat. Rev. Genet. v.2 The evolution and genetics of innate immunity Kimbrell,D.A.;B.Beutler https://doi.org/10.1038/35066006
- Infect. Immun. v.71 The Drosophila melanogaster toll pathway participates in resistance to infection by gram-negative human pathogen Pseudomonas aeruginosa Lau,G.W.;B.C.Goumnerov;C.L.Walendziewicz;J.Hewitson;W.Xiao;S.Mahajan-Miklos;R.G.Tompkins;L.A.Perkins;L.G.Rahme https://doi.org/10.1128/IAI.71.7.4059-4066.2003
- J. Mol. Biol. v.278 Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide Metchnikowin Levashina,E.A.;S.Ohresser;B.Lemaitre;J.L.Imler https://doi.org/10.1006/jmbi.1998.1705
- Mol. Microbiol. v.37 Elucidating the molecular mechanism of bacterial virulence using non-mammalian hosts Mahajan-Miklos,S.;L.G.Rahme;F.M.Ausubel https://doi.org/10.1046/j.1365-2958.2000.02056.x
- EMBO J. v.12 H₂O₂ and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor Meyer,M.;R.Schreck;P.A.Baeuerle
- J. Microbiol. Biotechnol. v.12 Glycolipid biosurfactants produced by Pseudomonas aeruginosa D2D2 from diesel-contaminated soil Moon,H.J.;Y.K.Lim;H.S.Kim;D.Y.Kwon;W.J.Chung
- Science v.268 Common virulence factors for bacterial pathogenicity in plants and animals Rahme,L.G.;E.J.Stevens;S.F.Wolfort;J.Shao;R.G.Tompkins;F.M.Ausubel https://doi.org/10.1126/science.7604262
- Immunity. v.12 The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila Rutschmann,S.;A.C.Jung;C.Hetru;J.M.Reichhart;J.A.Hoffmann;D.Ferrandon https://doi.org/10.1016/S1074-7613(00)80208-3
- EMBO J. v.10 Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1 Schreck,R.;P.Rieber;P.A.Baeuerle
- Genes Dev. v.15 NF-kR signaling pathways in mammalian and insect innate immunity Silverman,N.;T.Maniatis https://doi.org/10.1101/gad.909001
- Proc. Natl. Acad. Sci. USA v.96 Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors Tan,M.W.;L.G.Rahme;J.A.Sternberg;R.G.Tompking;F.M.Ausubel https://doi.org/10.1073/pnas.96.5.2408
- Proc. Natl. Acad. Sci. USA v.99 Constitutive expression of a single antimicrobial peptide can Drosophia mutants Tzou,P.;J.M.Reichhart;B.Lemaire https://doi.org/10.1073/pnas.042411999
- Mol. Microbiol. v.46 Differential accumulation of Salmonella [Cu,Zn] superoxide dismutases SodCI and SodCⅡ in intracellular bacteria: Correlation with their relative contribution to pathogenicity Uzzau,S.;L.Bossi;N.Figueroz-Bossi https://doi.org/10.1046/j.1365-2958.2002.03145.x
- Mol. Microbiol. v.16 Repair, refold, recycle: How bacteria can deal with spontaneous and environmental damage to proteins Visick,J.E.;S.Clarke https://doi.org/10.1111/j.1365-2958.1995.tb02311.x
- Mol. Microbiol. v.41 The roles of mucD an alginate in the virulence of Pseudomonas aeruginosa in plants, nematods and mice Yorgey,P.;L.G.Rahme;M.W.Tan;F.M.Ausubel https://doi.org/10.1046/j.1365-2958.2001.02580.x