Abstract
Nonlinear system responses of an impact system under randomly perturbed harmonic excitations are predicted in the probability domain by adopting the semi-analytical procedure previously developed. The semi-analytical procedure is obtained by solving the Fokker-Planck equation corresponding to the stochastic differential equation of the given impact system by utilizing the path-integral solution. The evolutionary joint probability density functions are generated by using the method, and the characteristics of nonlinear dynamic response behaviors of the system are examined. Noise effects on the responses are also examined. It Is found that the semi-analytical method can provides the accurate information of the responses via the joint probability functions for the impact system. It is found that the noises weaken and eventually terminate the chaos in the responses, but it is also found that the chaotic signatures reside in the presence of the external noise with relatively high intensity. The joint probability density function shows that the ensemble of the system responses are weakly stationary.
랜덤동요된 조화가진력을 받는 임팩트시스템의 비선형거동을 개발된 반해석적절차에 의해 확률영역에서 분석하였다. 반해석적절차는 path-integral solution을 이용하여 임팩트시스템의 추계론적 미분방정식으로부터 구함으로 얻어진다. 결합확률밀도함수의 전개를 구하고 시스템의 비선형거동 특성인 혼돈거동에 대하여 분석하고 노이즈의 영향을 시간영역과 확률영역에서 알아보았다. 결과로부터 반해석적절차는 결합확률밀도함수를 통하여 임팩트시스템의 거동에 대한 정보를 제공하는 것을 알 수 있었다. 노이즈의 영향은 혼돈거동의 특성을 약화시키며 궁극적으로 사라지게 함을 알 수 있었으며 또한 혼돈거동의 특성이 상대적으로 높은 노이즈아래에서도 남아있는 것을 밝혔다. 결합확률밀도함수는 응답앙상블이 약정상과정임을 확인시켜 주었다.