Dynamic Behaviors of an Impact System under Randomly Perturbed Harmonic Excitation by the Path-Integral Solution Procedure

Path-Integral Solution을 이용한 랜덤동요된 조화가진력을 받는 임팩트시스템의 거동분석

  • 마호성 (호서대학교 기계건축토목공학부)
  • Published : 2004.03.01

Abstract

Nonlinear system responses of an impact system under randomly perturbed harmonic excitations are predicted in the probability domain by adopting the semi-analytical procedure previously developed. The semi-analytical procedure is obtained by solving the Fokker-Planck equation corresponding to the stochastic differential equation of the given impact system by utilizing the path-integral solution. The evolutionary joint probability density functions are generated by using the method, and the characteristics of nonlinear dynamic response behaviors of the system are examined. Noise effects on the responses are also examined. It Is found that the semi-analytical method can provides the accurate information of the responses via the joint probability functions for the impact system. It is found that the noises weaken and eventually terminate the chaos in the responses, but it is also found that the chaotic signatures reside in the presence of the external noise with relatively high intensity. The joint probability density function shows that the ensemble of the system responses are weakly stationary.

랜덤동요된 조화가진력을 받는 임팩트시스템의 비선형거동을 개발된 반해석적절차에 의해 확률영역에서 분석하였다. 반해석적절차는 path-integral solution을 이용하여 임팩트시스템의 추계론적 미분방정식으로부터 구함으로 얻어진다. 결합확률밀도함수의 전개를 구하고 시스템의 비선형거동 특성인 혼돈거동에 대하여 분석하고 노이즈의 영향을 시간영역과 확률영역에서 알아보았다. 결과로부터 반해석적절차는 결합확률밀도함수를 통하여 임팩트시스템의 거동에 대한 정보를 제공하는 것을 알 수 있었다. 노이즈의 영향은 혼돈거동의 특성을 약화시키며 궁극적으로 사라지게 함을 알 수 있었으며 또한 혼돈거동의 특성이 상대적으로 높은 노이즈아래에서도 남아있는 것을 밝혔다. 결합확률밀도함수는 응답앙상블이 약정상과정임을 확인시켜 주었다.

Keywords

References

  1. Graham, R. 'Path Integral Formulation of General Diffusion Processes,' Zeitschrift fur Physik B, 26, 1997, pp.281-290
  2. Li, G. X., Rand, R. H. and Moon, F. C. (1990), 'Bifurcations and Chaos in a Forced Zero-Stiffness Impact Oscillator,' Int. J. Non-Linear Mechanics, Vol.25, No 4, pp.417-432 https://doi.org/10.1016/0020-7462(90)90030-D
  3. Moon, F. C. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers, John Wiley & Sons, 1987
  4. Ochi, M. K. (1990), Applied Probability & Stochastic Processes in Engineering and Physical Sciences, John Wiley & Sons, New York, 1990
  5. Risken, H. The Fokker-Planck Equation, Springer- Verlag, Berlin Heidelberg, 1984
  6. Shaw, S. W. 'The Dynamics of a Harmonically Excited System Having Rigid Amplitude Constraints,' Part I and II, Journal of Applied Mechanics, Vol. 52, 1985, pp.453-464 https://doi.org/10.1115/1.3169068
  7. Shinozuka, M, 'Simulation of Multivariate and Multidimensional' Journal of the Acoustical Society of America, 49, Random Processes, pp.357-367
  8. Wehner, M. F. and Wolfer, W. G. 'Numerical evaluation of path-integral solution to Fokker-Planck Equations,' Physical Review A, Vol. 5, No 27 1983, p.2663-2670 https://doi.org/10.1103/PhysRevA.27.2663
  9. Wissel, C. 'Manifolds of Equivalent Path Integral Solutions of the Fokker-Planck Equation,' Zeitschrift fur Physik B, 35, 1997, pp.185-191
  10. 마호성, '구분적선형시스템을 이용한 해양구조물의 거동분석,' 전산구조공학회, 1997, pp.251-265
  11. 마호성, '조화가진력을 받는 임팩트시스템의 거동', 대한토목학회논문집, 제18권 1-6호, 1998, pp.761-773
  12. 마호성, 'Fokker-Planck 방정식의 Path-Integral Solution을 이용한 구분적선형시스템의 비선형동적거동분석', 한국전산구조공학회논문집, 12권 2호, 1999, pp.251-264