DOI QR코드

DOI QR Code

Cadmium-Induced Phytotoxicity in Tomato Seedlings Due to the Accumulation of H2O2 That Results from the Reduced Activities of H2O2 Detoxifying Enzymes

  • Cho, Un-Haing (Department of Biology, Changwon National University)
  • Published : 2004.04.01

Abstract

Tomato (Lycopersicon esculentum) seedlings exposed to various concentrations of $CdC1_2$ (0∼100 $\mu$M) in the nutrient solution for up to 9 days were analyzed with the seedling growth, $H_2O_2$ production, glutathione levels and activity changes of enzymes related to $H_2O_2$ removal. The growth of seedlings was inhibited with over 50 $\mu$M Cd, whereas the levels of $H_2O_2$ and glutathione were enhanced with Cd exposure level and time. Meanwhile, Cd exposure increased the activities of catalase (CAT) and glutathione reductase (GR) but decreased the activities of dehydroascorbate acid reductase (DHAR) and ascorbate peroxidase (APX) in both leaves and roots. These results suggest that the altered activities of antioxidant enzymes particularly involved in the $H_2O_2$ removal and the subsequent $H_2O$$_2$ accumulation could induce the Cd-induced phytotoxicity.

Keywords

References

  1. Physiol Plantarum v.77 Biosynthesis and antioxidant function of glutathione in plants Alscher,R.G. https://doi.org/10.1111/j.1399-3054.1989.tb05667.x
  2. Physiol. Plantarum v.85 Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants Asada,K. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  3. New Phytol. v.127 Heavy metal accumulation and tolearnce in British populations of the metallophyte Thlaspi caerulesens J. & C. Presl (Brassicaceae) Baker,A.J.;R.D.Reeves;A.S.M.Hajar https://doi.org/10.1111/j.1469-8137.1994.tb04259.x
  4. J. Plant Nutr. v.13 Plant water relations as affected by heavy metal stress: A review Barcelo,J.;C.Poschenrieder
  5. J. Biotechnol. v.101 Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species Boominathan,R.;P.M.Doran https://doi.org/10.1016/S0168-1656(02)00320-6
  6. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein-dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Physiol. Plantarum v.80 Cysteine, γ-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. Ⅱ. Glutathione accumulation in detached leaves exposed to H₂S in the absence of light is stimulated by the supply of glycine to the petiole Buwalda,F.;I.Stulen;L.J.De Kok;P.J.C.Kuiper https://doi.org/10.1111/j.1399-3054.1990.tb04396.x
  8. Physiol. Plantarum v.83 Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max) Cakmak,I.;W.J.Horst https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
  9. Methods Enzymol. v.2 Assay of catalase and peroxidases Chance,B.;A.C.Maehly https://doi.org/10.1016/S0076-6879(55)02300-8
  10. Photosynth. Res. v.7 Inhibition of photosynthesis by metals Clijtsters,H.;F.Van Assche https://doi.org/10.1007/BF00032920
  11. Plant Science v.156 Mercury-induced oxidative stress in tomato seddlings Cho,U.H.;J.O.Park https://doi.org/10.1016/S0168-9452(00)00227-2
  12. Plant Science v.127 Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.) Chaoui,A.;S.Mazhoudi;M.H.Ghorbal;E.El Ferjani https://doi.org/10.1016/S0168-9452(97)00115-5
  13. Physiol. Plantarum v.82 Increased resistance to copper-induced damage of the root cell plasmalemma in copper-tolerant Silence cucubalus De Vos,C.H.R.;H.Schat;M.A.M. De Waal;R.Vooijs;W.H.O.Ernst https://doi.org/10.1111/j.1399-3054.1991.tb02942.x
  14. Plant Physiol. v.98 Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Sulene cucubalus De Vos,C.H.R.;M.Vonk;R.Vooijs;H.Schat https://doi.org/10.1104/pp.98.3.853
  15. Plant Physiol. Biochem. v.31 Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper-tolerant and sensitive Silene cucubalus De Vos,C.H.R.;W.M. Ten Boukum;R.Vooijs;H.Schat;L.J.De Kok
  16. J. Exp. Bot. v.52 Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad) Dixit,V.;V.Pandey;R.Shyam https://doi.org/10.1093/jexbot/52.358.1101
  17. Planta v.214 Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulatior Thlapsi (J&C. Presl) Ebbs,S.;I.Lau;B.Ahner;L.V.Kochian https://doi.org/10.1007/s004250100650
  18. Env. Exp. Bot. v.43 Combination toxicology of metal-enriched soils: physiological responses of a Zn- and Cd-resistant ecotype of Silene vulgaris on polymetallic sola Ernst,W.H.O.;H.J.M.Nelissen;W.M.Ten Bookum https://doi.org/10.1016/S0098-8472(99)00048-9
  19. J. Exp. Bot. v.48 Salinity, oxidative stress and antioxidant responses in shoot cultures of rice Fadzilla,N.M.;R.P.Finch;R.H.Burdon https://doi.org/10.1093/jxb/48.2.325
  20. Physiol. Plantarum v.92 Photooxidative stress in plants Foyer,C.H.;M.Lelandais;K.J.Kunert https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  21. Science v.230 Phytochelatins: the principal heavy-metal complexing pepties of higher palnts Grill,E.;E.L.Winnacker;M.H.Zenk https://doi.org/10.1126/science.230.4726.674
  22. Biochem. J. v.219 Oxygen toxicity, oxygen radicals, transition metals and disease Halliwell,B.;J.M.C.Gutteridge https://doi.org/10.1042/bj2190001
  23. Plant Science v.160 Comparative studies of H₂O₂detoxifying enzymes in green and greening barley seedlings under cadmium stress Hegedus,A.;S.Erdei;G.Horvath https://doi.org/10.1016/S0168-9452(01)00330-2
  24. Cal. Agri. Exp. Station. Circular. v.347 The water culture method for growing plants without soil Hoagland,D.R.;D.I.Arnon
  25. Plant Physiol. Biochem. v.40 Antioxidant response to cadmium in Phragmites australis plants Ianelli,M.A.;F.Pietrini;L.Fiore;L.Petrilli;A.Massacci https://doi.org/10.1016/S0981-9428(02)01455-9
  26. Plant Science v.164 Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity Karabal,E.;M.Yucel;H.A.Oktem https://doi.org/10.1016/S0168-9452(03)00067-0
  27. Plant. Physiol. Biochem. v.33 The mechanism of the stimulation of state 4 respiration by cadmium in potato tuber (Solanum tuberosum) mitochondria Kessler,A.;M.D.Brand
  28. Plant Physiol. v.134 Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy Kupper,H.;A.Mijovilovich;W.Meyer-Klaucke;P.M.H.Kroneck https://doi.org/10.1104/pp.103.032953
  29. Plant Physiol. v.131 Overexpression of Arabidopsis phytochelation synthase paradoxically leads to hypersensitivity to cadmium stress Lee,S.;J.S.Monn;T.S.Ko;D.Petros;P.B.Goldsbrough;S.S.Korban https://doi.org/10.1104/pp.900061
  30. J. Plant Nutr. v.16 Response of leguminosae to cadmium exposure Leita,L.;M. De Nobili;C.Mondini;M.T.Baca-Garcia https://doi.org/10.1080/01904169309364670
  31. Environmental Pollution and Plant Responses Phytochelatins and metal tolerance Mehra,R.K.;R.D.Tripathi;S.B.Agrawal(ed.);M.Agrawal(ed.)
  32. Plant Physiol. v.112 Synthesis of glutathione in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing γ-glutamylcysteine synthetase Noctor,G.;M.Strohm;L.Jouanin;K.J.Kunert;C.H.Foyer;H.Rennenberg https://doi.org/10.1104/pp.112.3.1071
  33. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.49 Ascorbate and gluthathione: Keeping active oxygen under control Noctor,G.;C.H.Foyer https://doi.org/10.1146/annurev.arplant.49.1.249
  34. J. Exp. Bot. v.49 Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants Noctor,G.;A.C.M.Arisi;L.Jouanin;K.J.Kunert;H.Rennenberg;C.H.Foyer https://doi.org/10.1093/jexbot/49.321.623
  35. Plant Physiol. v.118 Manipulation of glutathione and amino acid biosynthesis in the chloroplast Noctor,G.;A.C.M.Arisi;L.Jouanin;C.H.Foyer
  36. Phytochemistry v.45 Cadmium- and copper-induced changes in tomato membrane lipids Ouariti,O.;N.Boussama;M.Zarrouk;A.Cherif;M.H.Ghorbal https://doi.org/10.1016/S0031-9422(97)00159-3
  37. Biochem. Biophys. Acta v.230 Complex formation of zinc and cadmium with glutathione Perrin,D.D.;A.E.Watt
  38. Physiol. Plantarum v.110 Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance Pilon-Smits,E.A.H.;Y.Zhu;T.Sears;N.Terry https://doi.org/10.1111/j.1399-3054.2000.1100405.x
  39. Plant Cell v.6 Evidence for chilling-induced oxidative stress in maize seedings and a regulatory role for hydrogen peroxide Prasad,T.K.;M.D.Anderson;B.A.Martin;C.R.Stewart https://doi.org/10.1105/tpc.6.1.65
  40. Plant Physiol. v.109 Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide Rao,M.V.;B.A.Hale;D.P.Ormond https://doi.org/10.1104/pp.109.2.421
  41. Plant Science v.51 Changes in glutathione content of maize seedings exposed to cadmium Rauser,W.E. https://doi.org/10.1016/0168-9452(87)90190-7
  42. Plant Physiol. v.109 Phytochelatins and related peptides: Structure, biosynthesis, and function Rauser,W.E. https://doi.org/10.1104/pp.109.4.1141
  43. Plant Physiol. v.99 Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings Ruegsegger,A.;C.Brunold https://doi.org/10.1104/pp.99.2.428
  44. Environ. Exp. Bot. v.41 Responses to cadmium in higher plants Sanita di Toppi,L.A.;R.Gabbrielli https://doi.org/10.1016/S0098-8472(98)00058-6
  45. Plant Physiol. v.59 Chloroplast glutathione reductase Schaedle,M. https://doi.org/10.1104/pp.59.5.1011
  46. Plant Physiol. v.85 Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells Scheller,H.V.;B.Huang;E.Hatch;P.B.Goldsbrough https://doi.org/10.1104/pp.85.4.1031
  47. Bot. Acta v.108 Regulation of glutathione synthesis in suspension cultures of parsley and tobacco Schneider,S.;L.Bergmann https://doi.org/10.1111/j.1438-8677.1995.tb00828.x
  48. Plant Physiol. v.127 Cadmium-induced changes in antioxodative systems, hydrogen peroxide content, and differentiation in Scots Pine roots Schutzendubel,A.;P.Schwanz;T.Teichmann;K.Gross https://doi.org/10.1104/pp.010318
  49. Anal. Biochem. v.175 Asssay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis (2-nitrobenzoic acid) Smith,I.K.;T.L.Vierhaller;C.A.Thorne https://doi.org/10.1016/0003-2697(88)90564-7
  50. Physiol. Plantarum. v.85 Phytoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation Somashekaraiah,B.V.;K.Padmaja;A.R.K.Prasad https://doi.org/10.1111/j.1399-3054.1992.tb05267.x
  51. Plant Science v.114 Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobaco seedlings Vogeli-Lange,R.;G.W.Wagner https://doi.org/10.1016/0168-9452(95)04299-7
  52. Physiol. Plantarum v.96 Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper Weckx,J.E.J.;H.M.M.Clijster https://doi.org/10.1111/j.1399-3054.1996.tb00465.x
  53. Plant Physiol. Biochem. v.35 Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris Weckx,J.E.J.;H.M.M.Clijsters
  54. The Enzymes v.ⅩⅢ Flavin containing enzymes Williams,C.H.;P.D.Boer(ed.)
  55. Plant Physiol. v.83 Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and endogenous antioxidants Wise,R.R.;A.W.Naylor https://doi.org/10.1104/pp.83.2.278
  56. Plant Physiol. v.126 The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels Xiang,C.;B.L.Werner;E.M.Christensen;D.J.Oliver https://doi.org/10.1104/pp.126.2.564
  57. Plant Physiol. v.119 Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance Zhu,Y.L.;E.A.H.Pilon-Smits;L.Jouanin;N.Terry https://doi.org/10.1104/pp.119.1.73