References
- Physiol Plantarum v.77 Biosynthesis and antioxidant function of glutathione in plants Alscher,R.G. https://doi.org/10.1111/j.1399-3054.1989.tb05667.x
- Physiol. Plantarum v.85 Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants Asada,K. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
- New Phytol. v.127 Heavy metal accumulation and tolearnce in British populations of the metallophyte Thlaspi caerulesens J. & C. Presl (Brassicaceae) Baker,A.J.;R.D.Reeves;A.S.M.Hajar https://doi.org/10.1111/j.1469-8137.1994.tb04259.x
- J. Plant Nutr. v.13 Plant water relations as affected by heavy metal stress: A review Barcelo,J.;C.Poschenrieder
- J. Biotechnol. v.101 Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species Boominathan,R.;P.M.Doran https://doi.org/10.1016/S0168-1656(02)00320-6
- Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein-dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
- Physiol. Plantarum v.80 Cysteine, γ-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. Ⅱ. Glutathione accumulation in detached leaves exposed to H₂S in the absence of light is stimulated by the supply of glycine to the petiole Buwalda,F.;I.Stulen;L.J.De Kok;P.J.C.Kuiper https://doi.org/10.1111/j.1399-3054.1990.tb04396.x
- Physiol. Plantarum v.83 Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max) Cakmak,I.;W.J.Horst https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
- Methods Enzymol. v.2 Assay of catalase and peroxidases Chance,B.;A.C.Maehly https://doi.org/10.1016/S0076-6879(55)02300-8
- Photosynth. Res. v.7 Inhibition of photosynthesis by metals Clijtsters,H.;F.Van Assche https://doi.org/10.1007/BF00032920
- Plant Science v.156 Mercury-induced oxidative stress in tomato seddlings Cho,U.H.;J.O.Park https://doi.org/10.1016/S0168-9452(00)00227-2
- Plant Science v.127 Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.) Chaoui,A.;S.Mazhoudi;M.H.Ghorbal;E.El Ferjani https://doi.org/10.1016/S0168-9452(97)00115-5
- Physiol. Plantarum v.82 Increased resistance to copper-induced damage of the root cell plasmalemma in copper-tolerant Silence cucubalus De Vos,C.H.R.;H.Schat;M.A.M. De Waal;R.Vooijs;W.H.O.Ernst https://doi.org/10.1111/j.1399-3054.1991.tb02942.x
- Plant Physiol. v.98 Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Sulene cucubalus De Vos,C.H.R.;M.Vonk;R.Vooijs;H.Schat https://doi.org/10.1104/pp.98.3.853
- Plant Physiol. Biochem. v.31 Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper-tolerant and sensitive Silene cucubalus De Vos,C.H.R.;W.M. Ten Boukum;R.Vooijs;H.Schat;L.J.De Kok
- J. Exp. Bot. v.52 Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad) Dixit,V.;V.Pandey;R.Shyam https://doi.org/10.1093/jexbot/52.358.1101
- Planta v.214 Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulatior Thlapsi (J&C. Presl) Ebbs,S.;I.Lau;B.Ahner;L.V.Kochian https://doi.org/10.1007/s004250100650
- Env. Exp. Bot. v.43 Combination toxicology of metal-enriched soils: physiological responses of a Zn- and Cd-resistant ecotype of Silene vulgaris on polymetallic sola Ernst,W.H.O.;H.J.M.Nelissen;W.M.Ten Bookum https://doi.org/10.1016/S0098-8472(99)00048-9
- J. Exp. Bot. v.48 Salinity, oxidative stress and antioxidant responses in shoot cultures of rice Fadzilla,N.M.;R.P.Finch;R.H.Burdon https://doi.org/10.1093/jxb/48.2.325
- Physiol. Plantarum v.92 Photooxidative stress in plants Foyer,C.H.;M.Lelandais;K.J.Kunert https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
- Science v.230 Phytochelatins: the principal heavy-metal complexing pepties of higher palnts Grill,E.;E.L.Winnacker;M.H.Zenk https://doi.org/10.1126/science.230.4726.674
- Biochem. J. v.219 Oxygen toxicity, oxygen radicals, transition metals and disease Halliwell,B.;J.M.C.Gutteridge https://doi.org/10.1042/bj2190001
- Plant Science v.160 Comparative studies of H₂O₂detoxifying enzymes in green and greening barley seedlings under cadmium stress Hegedus,A.;S.Erdei;G.Horvath https://doi.org/10.1016/S0168-9452(01)00330-2
- Cal. Agri. Exp. Station. Circular. v.347 The water culture method for growing plants without soil Hoagland,D.R.;D.I.Arnon
- Plant Physiol. Biochem. v.40 Antioxidant response to cadmium in Phragmites australis plants Ianelli,M.A.;F.Pietrini;L.Fiore;L.Petrilli;A.Massacci https://doi.org/10.1016/S0981-9428(02)01455-9
- Plant Science v.164 Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity Karabal,E.;M.Yucel;H.A.Oktem https://doi.org/10.1016/S0168-9452(03)00067-0
- Plant. Physiol. Biochem. v.33 The mechanism of the stimulation of state 4 respiration by cadmium in potato tuber (Solanum tuberosum) mitochondria Kessler,A.;M.D.Brand
- Plant Physiol. v.134 Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy Kupper,H.;A.Mijovilovich;W.Meyer-Klaucke;P.M.H.Kroneck https://doi.org/10.1104/pp.103.032953
- Plant Physiol. v.131 Overexpression of Arabidopsis phytochelation synthase paradoxically leads to hypersensitivity to cadmium stress Lee,S.;J.S.Monn;T.S.Ko;D.Petros;P.B.Goldsbrough;S.S.Korban https://doi.org/10.1104/pp.900061
- J. Plant Nutr. v.16 Response of leguminosae to cadmium exposure Leita,L.;M. De Nobili;C.Mondini;M.T.Baca-Garcia https://doi.org/10.1080/01904169309364670
- Environmental Pollution and Plant Responses Phytochelatins and metal tolerance Mehra,R.K.;R.D.Tripathi;S.B.Agrawal(ed.);M.Agrawal(ed.)
- Plant Physiol. v.112 Synthesis of glutathione in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing γ-glutamylcysteine synthetase Noctor,G.;M.Strohm;L.Jouanin;K.J.Kunert;C.H.Foyer;H.Rennenberg https://doi.org/10.1104/pp.112.3.1071
- Annu. Rev. Plant Physiol. Plant Mol. Biol. v.49 Ascorbate and gluthathione: Keeping active oxygen under control Noctor,G.;C.H.Foyer https://doi.org/10.1146/annurev.arplant.49.1.249
- J. Exp. Bot. v.49 Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants Noctor,G.;A.C.M.Arisi;L.Jouanin;K.J.Kunert;H.Rennenberg;C.H.Foyer https://doi.org/10.1093/jexbot/49.321.623
- Plant Physiol. v.118 Manipulation of glutathione and amino acid biosynthesis in the chloroplast Noctor,G.;A.C.M.Arisi;L.Jouanin;C.H.Foyer
- Phytochemistry v.45 Cadmium- and copper-induced changes in tomato membrane lipids Ouariti,O.;N.Boussama;M.Zarrouk;A.Cherif;M.H.Ghorbal https://doi.org/10.1016/S0031-9422(97)00159-3
- Biochem. Biophys. Acta v.230 Complex formation of zinc and cadmium with glutathione Perrin,D.D.;A.E.Watt
- Physiol. Plantarum v.110 Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance Pilon-Smits,E.A.H.;Y.Zhu;T.Sears;N.Terry https://doi.org/10.1111/j.1399-3054.2000.1100405.x
- Plant Cell v.6 Evidence for chilling-induced oxidative stress in maize seedings and a regulatory role for hydrogen peroxide Prasad,T.K.;M.D.Anderson;B.A.Martin;C.R.Stewart https://doi.org/10.1105/tpc.6.1.65
- Plant Physiol. v.109 Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide Rao,M.V.;B.A.Hale;D.P.Ormond https://doi.org/10.1104/pp.109.2.421
- Plant Science v.51 Changes in glutathione content of maize seedings exposed to cadmium Rauser,W.E. https://doi.org/10.1016/0168-9452(87)90190-7
- Plant Physiol. v.109 Phytochelatins and related peptides: Structure, biosynthesis, and function Rauser,W.E. https://doi.org/10.1104/pp.109.4.1141
- Plant Physiol. v.99 Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings Ruegsegger,A.;C.Brunold https://doi.org/10.1104/pp.99.2.428
- Environ. Exp. Bot. v.41 Responses to cadmium in higher plants Sanita di Toppi,L.A.;R.Gabbrielli https://doi.org/10.1016/S0098-8472(98)00058-6
- Plant Physiol. v.59 Chloroplast glutathione reductase Schaedle,M. https://doi.org/10.1104/pp.59.5.1011
- Plant Physiol. v.85 Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells Scheller,H.V.;B.Huang;E.Hatch;P.B.Goldsbrough https://doi.org/10.1104/pp.85.4.1031
- Bot. Acta v.108 Regulation of glutathione synthesis in suspension cultures of parsley and tobacco Schneider,S.;L.Bergmann https://doi.org/10.1111/j.1438-8677.1995.tb00828.x
- Plant Physiol. v.127 Cadmium-induced changes in antioxodative systems, hydrogen peroxide content, and differentiation in Scots Pine roots Schutzendubel,A.;P.Schwanz;T.Teichmann;K.Gross https://doi.org/10.1104/pp.010318
- Anal. Biochem. v.175 Asssay of glutathione reductase in crude tissue homogenates using 5,5'-dithiobis (2-nitrobenzoic acid) Smith,I.K.;T.L.Vierhaller;C.A.Thorne https://doi.org/10.1016/0003-2697(88)90564-7
- Physiol. Plantarum. v.85 Phytoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation Somashekaraiah,B.V.;K.Padmaja;A.R.K.Prasad https://doi.org/10.1111/j.1399-3054.1992.tb05267.x
- Plant Science v.114 Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobaco seedlings Vogeli-Lange,R.;G.W.Wagner https://doi.org/10.1016/0168-9452(95)04299-7
- Physiol. Plantarum v.96 Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper Weckx,J.E.J.;H.M.M.Clijster https://doi.org/10.1111/j.1399-3054.1996.tb00465.x
- Plant Physiol. Biochem. v.35 Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris Weckx,J.E.J.;H.M.M.Clijsters
- The Enzymes v.ⅩⅢ Flavin containing enzymes Williams,C.H.;P.D.Boer(ed.)
- Plant Physiol. v.83 Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and endogenous antioxidants Wise,R.R.;A.W.Naylor https://doi.org/10.1104/pp.83.2.278
- Plant Physiol. v.126 The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels Xiang,C.;B.L.Werner;E.M.Christensen;D.J.Oliver https://doi.org/10.1104/pp.126.2.564
- Plant Physiol. v.119 Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance Zhu,Y.L.;E.A.H.Pilon-Smits;L.Jouanin;N.Terry https://doi.org/10.1104/pp.119.1.73