DOI QR코드

DOI QR Code

Microstructural Development in Synthetic Hydroxyapatite

합성 수산화아파타이트의 미세구조 발달

  • Kim, Jong-Hee (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Young-Min (School of Materials Science and Engineering, Pusan National University) ;
  • Yang, Tae-Young (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science and Engineering, Pusan National University)
  • Published : 2004.04.01

Abstract

Whisker and short rod shaped hydroxyapatite (Ca$_{10}$(PO$_4$)$_{6}$(OH)$_2$ with stoichiometric composition (Ca/P=1.62 -1.67, molar ratio) has been synthesized by hydrolysis and hydrothermal reaction of aqueous $\alpha$-Ca$_3$(PO$_4$)$_2$($\alpha$-TCP) solution (pH 11), respectively. The shape of resultant HAp was mainly dependent on synthetic route and the microstructural development was on processing condition. In hydrolysis processing, the degree of intersection of whiskerlike particles and agglomeration in the apsis line increased with increasing reaction time. In hydrothermal synthesis, the reaction product obtained under excessive reaction time ($\geq$3 h at 20$0^{\circ}C$) was severely agglomerated without further grain growth above certain critical size (0.75 ${\mu}{\textrm}{m}$ in length, 0.3${\mu}{\textrm}{m}$ 11m in diameter).

양론조성에 근접하는 (Ca/P=1.62-1.67, molar ratio) 휘스커 및 짧은 막대형상의 수산화아파타이트 (Ca$_{10}$(PO$_4$)$_{6}$(OH)$_2$$\alpha$-Ca$_3$(PO$_4$)$_2$($\alpha$-TCP) 수용액 (pH 11)의 가수분해와 수열반응으로 각각 합성하였다. 생성된 HAp의 입자형상은 합성방법에, 미세구조의 발달은 반응조건에 주로 의존하였다 가수분해의 경우 반응시간의 경과와 더불어 휘스커 입자들의 상호 교차와 장축방향에서의 응집이 일어났다 반면에, 수열처리에 있어서는 반응과정 중 임계크기(길이 0.75$mu extrm{m}$, 지름 0.3$\mu\textrm{m}$) 이상으로의 입성장은 일어나지 않았으며 과다한 반응시간(20$0^{\circ}C$, $\geq$3시간)은 입자들의 심한 응집을 유발하였다.

Keywords

References

  1. J. Kor. Ceram. Soc. v.40 no.6 Fabrication of Hydroxyapatite Whiskers by Hydrolysis of α-TCP D.J.Baek;T.Y.Yang;Y.B.Lee;S.Y.Yoon;H.C.Park https://doi.org/10.4191/KCERS.2003.40.6.608
  2. J. Am. Ceram. Soc. v.73 no.6 Hydrothermal Preparation of calcium Hydroxyapatite Powders T.Hattori;Y.Iwadate https://doi.org/10.1111/j.1151-2916.1990.tb09841.x
  3. Biomaterials v.22 Kinetics of Hydroxyapatite Precipitation at pH 10 to 11 C.Liu;Y.Huang;W.Shen;J.Chi https://doi.org/10.1016/S0142-9612(00)00166-6
  4. J. Kor. Ceram. Soc. v.39 no.1 Bone Cements in TTCP, DCPA, β-TCP, and PHA System H.J.Kim;S.C.Choi;J.W.Seok;R.Relle https://doi.org/10.4191/KCERS.2002.39.1.057
  5. J. Kor. Ceram. Soc. v.39 no.11 Preparation and Characterization of Synthetic Hydrozyapatite/Polyacrylic Acid Homogeneous Composite S.K.Lee;H.D.Lee;H.S.Shin;B.K.Lee https://doi.org/10.4191/KCERS.2002.39.11.1097
  6. J. Kor. Ceram. Soc. v.40 no.3 Hydrosyapatite Formation on Crystallized Bioactive Glass Coat on Alumina E.S.Lee;S.S.Jee;C.Y.Kim https://doi.org/10.4191/KCERS.2003.40.3.255
  7. Hydroxyapatite and Related Materials Hydrothermal Processing of Hydroxyapatite: Past, Present, and Futere J.Yoshimura;H.Suda;P.Brown(ed.);B.R.Constantz(ed.)
  8. Encyclopedia of Advanced Materials, Vol 2 Hydroxyapatite J.Czernuszka;D.Bloor(ed.);R.Brook(ed.);M.C.Flemings(ed.);S.Mahajan(ed.)
  9. J. Am. Ceram. Soc. v.82 no.8 Novel Synthesis Method of Hydroxyapatite Whisekrs by Hydrolysis of α-Tricalcium Phosphate in Mixtures of Water and Organic Solvent A.Nakahira;K.Sakamoto;S.Yamaguchi;M.Kaneno;S.Takeda;M.Okazaki https://doi.org/10.1111/j.1151-2916.1999.tb02035.x
  10. J. Am. Ceram. Soc. v.81 no.6 Novel Preparation Method Hydroxyapatite Fibers Y.Ota;T.Iwashita;T.Kasuga;Y.Abe https://doi.org/10.1111/j.1151-2916.1998.tb02529.x
  11. Bypsum & Lime v.188 Effect of additives on Hydration and Hardening of Tricalcium Phosphate H.Monma;M.Goto;T.Kohmura
  12. Bioceramics v.10 Transformation of α-TCP to HAP in Organic Media K.Sakamoto;M.Okazaki;A.Nakahira;S.Yamaguchi
  13. J. Eur. Ceram. Soc. v.18 Hydrothermal Synthesis of Calcium Deficient Hydroxyapatite with Controled Size and Homogeneous Morphology M.Andres Verges;C.Fermandez Gonzales;M.Martines;Gallego https://doi.org/10.1016/S0955-2219(98)00049-1
  14. Mater. Res. Bull. v.35 Preparation of various Calcium-Phosphate Powders by Ultrasonic Spray Freeze-Drying Technique K.Itatani;K.Iwafune;F.S.Howell;M.Aizawa https://doi.org/10.1016/S0025-5408(00)00245-2
  15. Mater. Res. Bull. v.6 Crystal Growth of Hydroxyapatite D.M.Roy
  16. Hydroxyapatite and Related Materials Thermal Stability of Synthethic Hydroxyapatite Y.Fang;D.K.Agrawal;D.M.Roy;P.Brown(ed.);B.R.Constantsz(ed.)
  17. J. Inorg. Biochem. v.39 Raman and Infrared Spectroscopic Investigation of Biological Hydroxyapayite M.A.Walters;Y.C.Leung;N.C.Blumenthal;R.Z.LeGeros;K.A.Konsker https://doi.org/10.1016/0162-0134(90)84002-7
  18. Yogyo-Kyokai-Shi v.84 The Hydration of α-Tricalcium Phoshpate H.Monma;T.Kanazawa https://doi.org/10.2109/jcersj1950.84.968_209
  19. Yogyo-Kyokai-Shi v.86 Changes in Composition and Structure of Tricalcium Phosphate under Different pH Conditions H.Monma;S.Ueno;M.Tsutsumi;T.Kanazawa https://doi.org/10.2109/jcersj1950.86.1000_590

Cited by

  1. Determination of stoichiometric Ca/P ratio in biphasic calcium phosphates using X-ray diffraction analysis vol.20, pp.2, 2010, https://doi.org/10.6111/JKCGCT.2010.20.2.093
  2. Synthesis and characterization of silicon ion substituted biphasic calcium phosphate vol.20, pp.5, 2010, https://doi.org/10.6111/JKCGCT.2010.20.5.243
  3. Characterization of the biodegradable behavior for biphasic calcium phosphates using X-ray diffraction and lattice parameter vol.21, pp.4, 2011, https://doi.org/10.6111/JKCGCT.2011.21.4.169