Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets

퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론

  • 조상엽 (청운대학교 인터넷컴퓨터학과) ;
  • 김기석 (순천향대학교 정보기술공학부)
  • Published : 2004.04.01

Abstract

In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

일반적으로 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 명제의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 명제의 확신도를 구간값 퍼지 집합으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지 추론을 하는 것이 가능하게 된다. 본 논문에서는 퍼지 페트리네트와 이 네트에 기반을 둔 규칙 기반시스템을 위한 구간값 퍼지 집합 후진추론 알고리즘을 제안한다. 규칙 기반시스템에 있는 퍼지 생성규칙은 퍼지 페트리네트로 모형화된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 확신도와 규칙의 확신도는 구간값 퍼지 집합으로 표현한다. 여기에서 제안한 알고리즘은 목표노드에서 시작노드까지 후진추론 통로를 찾아낸 후 목표노드의 확신도를 계산한다. 구간값 퍼지 집합 후진추론 알고리즘은 규칙 기반 시스템이 더 유연하고 사람들이 하는 것과 같은 퍼지 후진추론을 가능하게 한다.

Keywords