Adaptive Finite Element Analysis of 2-D Plane Problems Using the rp-Method

절점이동과 단항증가법에 의한 이차원 평면문제의 적응 유한요소 해석

  • Published : 2004.03.01

Abstract

Adaptive finite element analysis, in which its solution error meets with the user defined allowable error, is recently used to improve the reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and the other is the reconstruction of finite elements. In the (p-method, an element size is controlled by relocating of nodal positions (r-method) and the order of an element shape function is determined by the hierarchical polynomial (p-method) corresponding to the clement solution error by the enhanced SPR. In order to show the effectiveness and the accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods.

최근, 유한요소해석견과의 신뢰도를 향상시키기 위하여 활발하게 연구되고 있는 적응유한요소해석은 반복계산을 통해서 해석결과의 오차가 사용자에 의해 지정된 허용오차와 같아지도록 하는 해석방법이다. 이와 간은 적응유한요소해석은 해석결과의 오차평가와 이에 따른 유한요소의 재구성과정으로 나누어진다. rp방법에서는 절점의 위치를 이동시켜 요소의 크기를 조절하는 r방법과 형상함수찻수를 증가시키는 p방법을 동시에 적용함으로써 적응해석의 유효성을 향상시키고자 하였다. 제안한 rp방법의 특성을 규명하고 적응해석의 유효성을 보이기 위하여 전형적인 이차원 평면문제들을 해석하고 그 결과를 검토하였다.

Keywords

References

  1. Babuska I. And Rheinboldt W. C., 'A Posteriori Error Estimates of the Finite Element Method', Internatinal Journal for Numerical Methods in Engineering, Vol. 12 , 1978, pp.1597-1615 https://doi.org/10.1002/nme.1620121010
  2. Kelly D. W. , Gago J. P. de SiR. , Zienkiewicz O. C. and Babuska I., 'A Posteriori Error Analysis and Adaptive Processes in the Finite Element Method ; part 1. Error Analysis', International Journal for Numerical Methods in Engineering, Vol. 19 1983, pp.1593-1619 https://doi.org/10.1002/nme.1620191103
  3. Zienkiewicz O. C. and Zhu J. Z. , 1987 , 'A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis', International Journal for Numerical Methods in Enginnering, Vol. 24, pp.333-357 https://doi.org/10.1002/nme.1620240206
  4. Zienkiewicz O. C. and Zhu J. Z. , 'The Super- convergent Patch Recovery and a Posteriori Estimates. Part 1. The Recovery Technique', Internatinal Journal for Numerical Methods in Engineering , Vol. 33, 1992, pp.1331-1364 https://doi.org/10.1002/nme.1620330702
  5. Zienkiewicz O. C. and Zhu J. Z. , 'The Super- convergent Patch Recovery and a Posteriori Estimates. Part 2. Error Estimates and Adaptivity', Internatinal Journal for Numerical Methods in Engineering , Vol. 33, 1992, pp.1365-1382 https://doi.org/10.1002/nme.1620330703
  6. Wiberg N-E. and Abdulwahab F., 'Patch Recovery Based on Superconvergent Derivatives and Equilibrium', International Journal for Numerical Methods in Engineering , Vol. 36, 1993, pp. 2703-2724 https://doi.org/10.1002/nme.1620361603
  7. Wiberg N-E. and Abdulwahab F. , 'Error Estimation with Post Processed FE-Solutions', Advances in Post and Preprocessing for Finite Element Technology, CIVIL-COMP Ltd, Edinburgh , Scotland, 1994, pp.1-22
  8. Blacker T. and Belytshko T. , 'Superconvergent Patch Recovery with Equilibrium and Conjoint Interpolant Enhancements',International Journal for Numerical Methods in Engineering , Vol. 37, 1994, pp.517-536 https://doi.org/10.1002/nme.1620370309
  9. Li X. D. and Wiberg N-E. , 'A Posteriori Error Estimate by Element Patch Post-processing, Adaptive Analysis in Energy and L2 Norms', Computers & Structures, Vol. 53, No. 4, 1994, pp.907-919 https://doi.org/10.1016/0045-7949(94)90378-6
  10. Oh H. S. and Lim J. K., 'Modified r-method for the Finite Element Adaptive Analysis of Plane Elastic Problem', KSME International Journal , Vol. 10, 1996, pp.190-202 https://doi.org/10.1016/0045-7949(94)90378-6
  11. Zienkiewicz O. C. and Kelly D. W., 'The Hierarchical Concept in Finite Element Analysis', Computers & Structures, Vol. 16, 1983, pp.53-65 https://doi.org/10.1016/0045-7949(83)90147-5
  12. Robinson J., 'An Introduction to Hierarchical Displacement Elements and the Adaptive Technique', Finite Elements in Analysis and Design, Vol. 2, 1986, pp.377-388 https://doi.org/10.1016/0168-874X(86)90023-5