DOI QR코드

DOI QR Code

THE m-TH ROOT FINSLER METRICS ADMITTING (α, β)-TYPES

  • Published : 2004.02.01

Abstract

The theory of m-th root metric has been developed by H. Shimada [8], and applied to the biology [1] as an ecological metric. The purpose of this paper is to introduce the m-th root Finsler metrics which admit ($\alpha,\;\beta$)-types. Especially in cases of m = 3, 4, we give the condition for Finsler spaces with such metrics to be locally Minkowski spaces.

Keywords

References

  1. The theory of sprays and Finsler spaces with applications in physics and biology P.L.Antonelli;R.Ingarden;M.Matsumoto
  2. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem. v.22 On the condition that a Randers space be conformally flat Y.Ichijyo;M.Hashiguchi
  3. Tensor (N.S.) v.33 no.2 On Finsler spaces with a cubic metric M.Matsumoto;S.Numata
  4. Tensor (N.S.) v.50 no.3 A special class of locally Mikowski space with (α, β)-metric and conformally flat Kropina spaces M.Matsumoto
  5. Rep. Math. Phys. v.31 no.1 Theory of Finsler spaces with (α, β)-metric https://doi.org/10.1016/0034-4877(92)90005-L
  6. Tensor (N.S.) v.56 no.1 Theory of Finsler spaces with m-th root metric:Connections and main scalars M.Matsumoto;K.Okubo
  7. Tensor (N.S.) v.56 no.2 On a Finsler spaces with a special (α, β)-metric H.S.Park;E.S.Choi
  8. Tensor (N.S.) v.33 no.3 On Finsler spaces with the metric L=($a_{i_{1}i_{2}...i_{m}}y^{i_{1}}...y^{i_{2}}...y^{i_{m}})^frac{1}{m}$ H.Shimada
  9. M. Matsumoto and K. Okubo, Theory of Finsler spaces with m-th root metric: Connections and main scalars, Tensor (N.S.) 56 (1995), no. 1, 93-104.
  10. H. S. Park and E. S. Choi, On a Finsler spaces with a special ($\alpha,\;\beta$)-metric, Tensor (N.S.) 56 (1995), no. 2, 142-148.
  11. H. Shimada, On Finsler spaces with the metric L = ($a_{i_{1}i_{2}...i_{m}}y^{i_{1}}y^{i_{2}}...y^{i_{m}})^{\frac{1}{m}}$, Tensor (N.S.) 33 (1979), no. 3, 365-372.

Cited by

  1. On an R-Randersmth-Root Space vol.2013, 2013, https://doi.org/10.1155/2013/649168
  2. Projectively Flat Fourth Root Finsler Metrics vol.55, pp.01, 2012, https://doi.org/10.4153/CMB-2011-056-5