THE m-TH ROOT FINSLER METRICS ADMITTING (α, β) -TYPES

Byung-Doo Kim* and Ha-Yong Park

ABSTRACT. The theory of m-th root metric has been developed by H. Shimada [8], and applied to the biology [1] as an ecological metric. The purpose of this paper is to introduce the m-th root Finsler metrics which admit (α, β) -types. Especially in cases of m = 3, 4, we give the condition for Finsler spaces with such metrics to be locally Minkowski spaces.

1. Introduction

Let $F^n = (M^n, L)$ be n-dimensional Finsler space with a fundamental metric function L(x, y). The m-th root Finsler metric L(x, y) of a differentiable manifold M^n is first defined by H. Shimada [8] as

(1.1)
$$L(x,y)^m = a_{i_1 i_2 \dots i_m}(x) y^{i_1} y^{i_2} \dots y^{i_m},$$

where the coefficients $a_{i_1i_2...i_m}(x)$ are components of a symmetric tensor field covariant of order m, depending on the position x alone. It is regarded as a direct generalization of Riemannian metric in a sense. Of course, the second root metric is a Riemannian metric. Now we shall restrict $m \geq 3$ throughout the paper. The third and fourth metrics are called the *cubic metric* and *quartic metric* respectively. A Finsler space with a cubic metric (resp. quartic metric) is called the *cubic Finsler space* (resp. *quartic Finsler space*).

A Finsler metric $L(\alpha, \beta)$ is called an (α, β) -metric if it is a positively homogeneous function of α and β of degree 1, where $\alpha^2 = a_{ij}(x)y^iy^j$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M^n . Throughout this paper our discussion is restricted to such a domain of M^n that the

Received March 30, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 53B40.

Key words and phrases: Berwald space, locally Minkowski, m-th root metric.

^{*}This work is supported by the Kyungil University Research Grant, 2003.

 β does not vanish. The interesting examples of an (α, β) -metric [5] are the Randers metric, Kropina metric and Matsumoto metric. The (α, β) -metric has been sometimes treated in theoretical physics ([1], [5]), and studied by some authors ([2], [4], [7]).

Let F^n be a Finsler space with a cubic metric L(x,y). In the previous paper [3], authors dealt with the cubic metric, which admits an (α,β) -metric. In case of n>2, if L is an (α,β) -metric where α is non-degenerate, then L^3 can be written in the form $L^3=a\alpha^2\beta+b\beta^3$ with constants a and b. Therefore we can consider what is a general form of m-th root metric $(m \geq 3)$ with (α,β) -metric.

Paying attention to the homogeneity of $L(\alpha, \beta)$, from (1.1) we obtain

(1.2)
$$a) L^{3} = c_{1}\alpha^{2}\beta + c_{2}\beta^{3},$$

$$b) L^{4} = c_{1}\alpha^{4} + c_{2}\alpha^{2}\beta^{2} + c_{3}\beta^{4},$$

$$\vdots$$

$$c) L^{m} = \sum_{r=0}^{s} c_{m-2r}\alpha^{2r}\beta^{m-2r}, \ s \leq \frac{m}{2},$$

where c's are arbitrary constants and s is an integer.

Thus we have

PROPOSITION 1.1. Let L^m be the m-th root Finsler metric which admits an (α, β) -metric. Then the fundamental function L^m is characterized by the equation (1.2)c).

On the other hand, if $\alpha^2 \equiv 0 \pmod{\beta}$, that is, $a_{ij}(x)y^iy^j$ contains $b_i(x)y^i$ as a factor, then the dimension is equal to two and b^2 vanishes. Hence in this paper, we assume that $b^2 \neq 0$ and $n \geq 3$.

In the section 3 and section 4, the Matsumoto's method of [4] will now be applied to find the condition that F^n be a locally Minkowski space.

2. The Berwald connection and locally Minkowski space

A Finsler space is called a Berwald space, if the connection coefficients G_{jk}^i of $B\Gamma$ is function of position x^i alone, in any coordinate system. If a Finsler space has a covering of coordinate neighborhoods in which g_{ij} does not depend on x, then it is called $locally\ Minkowski$

[1]. A Finsler space is a locally Minkowski, if and only if it is a Berwald space and h-curvature tensor H^2 of $B\Gamma$ vanishes.

For the Berwald connection $B\Gamma = (G_{jk}^i, G_k^i, 0)$, the covariant derivative of a vector $X^i(x, y)$ is given by

$$X^{i}_{j} = \partial_{j}X^{i} - \dot{\partial}_{a}X^{i}G^{a}_{j} + G_{aj}^{i}X^{a},$$

where $\partial_i = \partial/\partial x^j$ and $\dot{\partial}_r = \partial/\partial y^r$.

Let $\gamma_j{}^i{}_k(x)$ be Christoffel symbols of the Riemannian metric α and (;) be the covariant differentiation with respect to $\gamma_j{}^i{}_k$. To find the Berwald connection $B\Gamma$, we put $2G^i(=G^i{}_0)=\gamma_0{}^i{}_0+2B^i$, where the subscript 0 means a contraction by y^i . Then we have

(2.1)
$$G_{j}^{i} = \gamma_{0}^{i}{}_{j} + B_{j}^{i}{}_{k}, G_{j}^{i}{}_{k} = \gamma_{j}^{i}{}_{k} + B_{j}^{i}{}_{k},$$

where $B^{i}{}_{j} = \dot{\partial}_{j}B^{i}$ and $B_{j}{}^{i}{}_{k} = \dot{\partial}_{j}B^{i}{}_{k}$. Putting $L_{\alpha} = \partial L/\partial \alpha$ and $L_{\beta} = \partial L/\partial \beta$, on account of [4], $B_{j}{}^{i}{}_{k}$ is determined by

$$(2.2) L_{\alpha} P_{i00} = \alpha L_{\beta} Q_{i0},$$

where $P_{i00} = B_j^{\ k}{}_i y^j y_k$, $Q_{i0} = (b_{j;i} - B_j^{\ k}{}_i b_k) y^j$ and $y_k = a_{rk} y^r$.

It is obvious that a Finsler space with $L(\alpha, \beta)$ is a Berwald space if and only if $B_j^{\ k}_{\ i}$ given by (2.2) is a function of x alone. We denote by $R_h^{\ i}_{\ jk}$ a Riemannian curvature tensor with respect to the $\gamma_j^{\ i}_k$. Then h-curvature tensor H^2 of $B\Gamma$ is given by [4]

$$(2.3) H_h{}^i{}_{jk} = R_h{}^i{}_{jk} + \mathcal{U}_{(jk)} \{ B_h{}^i{}_{j;k} - B_0{}^r{}_k \dot{\partial}_r B_h{}^i{}_j + B_h{}^r{}_j B_r{}^i{}_k \},$$

where $\mathcal{U}_{(jk)}$ denotes the terms obtained from the preceding terms by interchanging indices j and k. If F^n is locally Minkowski, then it is a Berwald with $H^2 = 0$. From (2.3), consequently we have

THEOREM 2.1 [4]. A $F^n = (M^n, L(\alpha, \beta))$ is a locally Minkowski if and only if $B_j{}^k{}_i$ is a function of x alone and $R_h{}^i{}_{jk}$ of the Riemannian α is written as:

(2.4)
$$R_h^{i}{}_{jk} = -\mathcal{U}_{(jk)} \{ B_h^{i}{}_{j;k} + B_h^{r}{}_{j} B_r^{i}{}_{k} \}.$$

If (2.2) gives $P_{i00} = Q_{i0} = 0$ necessarily, then we have $B_j{}^k{}_i = 0$ and $b_{j;i} = 0$, and (2.4) shows $R_h{}^i{}_{jk} = 0$.

3. A locally Minkowski space in case of m=3

We consider a cubic metric which admits an (α, β) -metric (1.2)a). Let $F^n = (M^n, L)$ be an *n*-dimensional Finsler space $(n \ge 3)$ whose metric function is given by (1.2)a).

From (1.2)a, the equation (2.2) gives

(3.1)
$$2c_1\beta P_{i00} = (c_1\alpha^2 + 3c_2\beta^2)Q_{i0}.$$

Now we assume that F^n is a Berwald space, that is, $B_j^i{}_k$ is a function of position only. Then above equation is a polynomial of three order in y and shows the existence of function $f_i(x)$ satisfying

(3.2) a)
$$P_{i00} = (c_1 \alpha^2 + 3c_2 \beta^2) f_i$$
, b) $Q_{i0} = 2c_1 \beta f_i$.

Differentiating (3.2)a) with respect to y and using the Christoffel process, we obtain

$$B_j^{k}{}_i a_{kh} + B_h^{k}{}_i a_{kj} = 2\psi_{jh} f_i,$$

from which

(3.3)
$$B_j^{\ k}{}_i = \psi_j^{\ k} f_i + \psi_i^{\ k} f_j - \psi_{ji} f^k,$$

where $\psi_j^k = c_1 \delta_j^k + 3c_2 b^k b_j$ and $\psi_{ji} = a_{ki} \psi_j^k$. The equation (3.2)b) is written in the form $b_{j;i} = B_j^{\ k}{}_i b_k + 2c_1 b_j f_i$. From this and (3.3), we get

$$(3.4) b_{i;i} = 3(c_1 + c_2b^2)b_if_i + (c_1 + 3c_2b^2)b_if_i - \sigma(c_1a_{ii} + 3c_2b_ib_i),$$

where $b^2 = a^{ij}b_ib_j$ and $\sigma = f^kb_k$. From (2.1) and (3.4), in the similar way as the Kropina space [4], we have

THEOREM 3.1. Let $F^n = (M^n, L)$ be an n-dimensional Finsler space $(n \ge 3)$ with the metric (1.2)a). The F^n is a Berwald space if and only if there exists $f_i(x)$ satisfying (3.4), and then the Berwald connection is written as

$$B\Gamma = (\gamma_j{}^k{}_i + B_j{}^k{}_i, \gamma_0{}^k{}_i + B_0{}^k{}_i, 0),$$

where $B_j^{\ k}_i$ is given by (3.3).

Further, contraction of (3.4) by b^j yields

(3.5)
$$b^{j}b_{j;i} = 3b^{2}(c_{1} + c_{2}b^{2})f_{i}.$$

Since $(b^2)_{;i} = 2b^j b_{j;i}$, (3.5) leads us to

(3.6)
$$f_i = (b^2)_{;i}/6b^2(c_1 + c_2b^2) = (6c_1)^{-1}\partial_i \{\log b^2/(c_1 + c_2b^2)\}.$$

From (3.6) we can see that $f_i(x)$ is a gradient vector. Consequently we have

LEMMA 3.1. The vector field $f_i(x)$ in (3.2) is a gradient vector, which is given by $f_i = (6c_1)^{-1} \partial_i \{ \log b^2/(c_1 + c_2 b^2) \}$.

Further, a locally Mikowski space is characterized as a Berwald space with the vanishing h-curvature tensor H^2 of $B\Gamma$. From Theorem 3.1 and Lemma 3.1, we have

THEOREM 3.2. Let $F^n = (M^n, L)$ be an n-dimensional Finsler space $(n \geq 3)$ with the metric (1.2)a). It is a locally Minkowski space if and only if $b_{j;i}$ and R_{hijk} are written in the forms (3.4) and (2.4) respectively, where $f_i(x) = (6c_1)^{-1}\partial_i\{\log b^2/(c_1 + c_2b^2)\}$ and $B_i^{\ k}_i$ is given by (3.3).

4. A locally Minkowski space in case of m=4

Next we consider quartic metric form (1.2)b):

(4.1)
$$L^4 = c_1 \alpha^4 + c_2 \alpha^2 \beta^2 + c_3 \beta^4,$$

where c_1, c_2 and c_3 are non-zero constants.

If $D = c_2^2 - 4c_1c_3 = 0$, then (4.1) is reduced to $L^2 = a\alpha^2 + b\beta^2$ for arbitrary constants a and b. In this case the metric $L(\alpha, \beta)$ is a Riemannian metric. Hence we shall treat the non-Riemannian space afterward and assume that $D \neq 0$.

From (4.1), the equation (2.2) gives

$$(4.2) (2c_1P_{i00} - c_2\beta Q_{i0})\alpha^2 + (c_2P_{i00} - 2c_3\beta Q_{i0})\beta^2 = 0.$$

Assuming that F^n be a Berwald space, then there exists the covariant vector $\lambda_i(x)$ such that

(4.3)
$$a) c_2 P_{i00} - 2c_3 \beta Q_{i0} = \alpha^2 \lambda_i, b) 2c_1 P_{i00} - c_2 \beta Q_{i0} = -\beta^2 \lambda_i.$$

From (4.3) we have

(4.4) a)
$$P_{i00} = \lambda_i (c_2 \alpha^2 + 2c_3 \beta^2)/D$$
, b) $\beta Q_{i0} = \lambda_i (2c_1 \alpha^2 + c_2 \beta^2)/D$.

Differentiating (4.4)a) by y and using the Christoffel processing, we get

$$(4.5) B_i^{\ k}_{\ i} = (\phi_i^k \lambda_i + \phi_i^k \lambda_i - \phi_{ii} \lambda^k)/D,$$

where $\phi_j^k = c_2 \delta_j^k + 2c_3 b^k b_j$ and $\phi_{ji} = a_{ir} \phi_j^r$. Next, differentiating (4.4)b) by y we have

$$b_h Q_{ij} + b_j Q_{ih} = 2\lambda_i (2c_1 a_{hj} + c_2 b_h b_j)/D,$$

which is written as

$$(4.6) b_h b_{i:i} + b_i b_{h:i} + B_i^{\ k} b_k b_h + B_h^{\ k} b_k b_i = 2\lambda_i (2c_1 a_{hi} + c_2 b_h b_i)/D.$$

Substituting (4.5) into (4.6) and contracting this by $b^h b^j$, we obtain

$$(4.7) b^h b_{h,i} = 2\lambda_i (c_1 - c_3 b^4)/D.$$

Similarly, contracting (4.6) a^{hj} we have $b^h b_{h;i} = 2\lambda_i (nc_1 - c_3 b^4)/D$. Combining this and (4.7) we have $(n-1)c_1\lambda_i = 0$, which implies $\lambda_i = 0$. Hence, from (4.5) and (4.6) we get $B_j^{\ k}_{\ i} = 0$ and $b_{j;i} = 0$.

Conversely if $b_{i,j} = 0$, then F^n with (α, β) -metric is a Berwald space. From (2.1), consequently we have

THEOREM 4.1. Let F^n be an n-dimensional Finsler space $(n \geq 3)$ with the metric (1.2)b). It is a Berwald space if and only if $b_{j;i} = 0$, and then $B\Gamma = (\gamma_j^k{}_i, \gamma_0{}^k{}_i, 0)$.

In the case of $B_j^{\ k}{}_i = 0$, from (2.4) we obtain $R_h^{\ i}{}_{jk} = 0$. Summarizing up the above results and using Theorem 2.1, we have

THEOREM 4.2. Let F^n be an n-dimensional Finsler space $(n \geq 3)$ with the metric (1.2)b). It is a locally Minkowski space if and only if $R_h^i{}_{ik} = 0$ and $b_{ii} = 0$.

On the other hand, for a function $\sigma(x)$ a conformal change [1] of (α, β) -metric is expressed as $(\alpha, \beta) \to (\bar{\alpha}, \bar{\beta})$ where $\bar{\alpha} = e^{\sigma}\alpha$, $\bar{\beta} = e^{\sigma}\beta$. A Finsler space is called *conformally flat*, if it is conformal to a locally Minkowski space. In previous papers ([2], [4], [7]), the authors dealt with conformally flat spaces.

For an (α, β) -metric, a conformally invariant symmetric linear connection $M_j^{\ i}_{\ k}$ is defined by [2]

$$M_{jk}^{i} = \gamma_{jk}^{i} + \delta_{jk}^{i} M_{k} + \delta_{kk}^{i} M_{j} - M^{i} a_{jk},$$

where
$$M_j = \{b_{j,k}b^k - b^k_{j,k}b_j/(n-1)\}/b^2, M^i = a^{ij}M_j$$
.

We denote by $\overset{m}{\nabla}$ and $M_h{}^i{}_{jk}$ the covariant differentiation with respect to $M_j{}^i{}_k$ and the curvature tensor of this connection respectively. A Finsler space with an (α, β) -metric is called *flat-parallel*, if $R_h{}^i{}_{jk} = 0$ and $b_{i;j} = 0$.

THEOREM 4.3 [4]. A Finsler space with (α, β) -metric is conformal to a flat-parallel Minkowski space if and only if the condition

(4.8)
$$M_h^{i}{}_{jk} = 0, \overset{m}{\nabla}_{j} M_i = \overset{m}{\nabla}_{i} M_j, \overset{m}{\nabla}_{j} b_i = -b_i M_j$$

is satisfied.

In an (α, β) -metric, a conformal change preserves the type of metric invariant. From Theorem 4.2, we can see that F^n with the metric (1.2)b) is flat-parallel. Thus these conditions are also applicable to the metric (1.2)b). Consequently, from Theorem 4.3 we have

THEOREM 4.4. Let F^n be an n-dimensional Finsler space $(n \geq 3)$ with the metric (1.2)b). It is conformally flat if and only if the condition (4.8) is satisfied.

Whenever we find the condition that $F^n = (M^n, L(\alpha, \beta))$ be a locally Minkowski space, we have necessarily two types. One is a Randers type, that is, flat-parallel, and the other is a Kropina type ([1], [4]). Hence we can construct the following.

REMARK. We have obtained two interesting conditions: 1) F^n has a Kropina type in case of m = 3, and 2) F^n has a Randers type in case of m = 4. Further, on account of Theorem 3.2 it is observed that a F^n with the metric (1.2)a) is not necessarily conformal to a flat-parallel Minkowski space, even if it is conformally flat.

References

- [1] P. L. Antonelli, R. Ingarden and M. Matsumoto, *The theory of sprays and Finsler spaces with applications in physics and biology*, Kluwer Acad. publ., Netherlands (1993).
- [2] Y. Ichijyō and M. Hashiguchi, On the condition that a Randers space be conformally flat, Rep. Fac. Sci., Kagoshima Univ. Math. Phys. Chem. 22 (1989), 7–14.
- [3] M. Matsumoto and S. Numata, On Finsler spaces with a cubic metric, Tensor (N.S.) 33 (1979), no. 2, 153-162.
- [4] M. Matsumoto, A special class of locally Mikowski space with (α, β) -metric and conformally flat Kropina spaces, Tensor (N.S.) 50 (1991), no. 3, 202–207.
- [5] _____, Theory of Finsler spaces with (α, β) -metric, Rep. Math. Phys. **31** (1992), no. 1, 43-83.
- [6] M. Matsumoto and K. Okubo, Theory of Finsler spaces with m-th root metric: Connections and main scalars, Tensor (N.S.) 56 (1995), no. 1, 93-104.
- [7] H. S. Park and E. S. Choi, On a Finsler spaces with a special (α, β)-metric, Tensor (N.S.) 56 (1995), no. 2, 142–148.

[8] H. Shimada, On Finsler spaces with the metric $L = (a_{i_1 i_2 ... i_m} y^{i_1} y^{i_2} ... y^{i_m})^{\frac{1}{m}}$, Tensor (N.S.) 33 (1979), no. 3, 365–372.

Department of Mathematics, Kyungil University, Kyungsan 712-701, Korea E-mail: bdkim@kiu.ac.kr hypark@kiu.ac.kr