Abstract
This paper proposes a totally new method in the chaos characteristics' analysis of power systems, the introduction of topological invariants. Using a return histogram, a bifurcation graph was drawn. As well, the periodic orbits and topological invariants - the local crossing number, relative rotation rates, and linking number during the process of period-doubling bifurcation and chaos were extracted. This study also examined the effect on the topological invariants when the sensitive parameters were varied. In addition, the topological invariants of a three-dimensional embedding of a strange attractor were extracted and the result was compared with those obtained from differential equations. This could be a new approach to state detection and fault diagnosis in dynamical systems.