DOI QR코드

DOI QR Code

ISAAC : An Integrated System with User Interface for Sentence Analysis

ISAAC :문장분석용 통합시스템 및 사용자 인터페이스

  • 김곤 (울산대학교 대학원 컴퓨터.정보통신공학부) ;
  • 김민찬 (울산대학교 대학원 컴퓨터.정보통신공학부) ;
  • 배재학 (울산대학교 컴퓨터.정보통신공학부) ;
  • 이종혁 (포항공과대학교 컴퓨터공학과)
  • Published : 2004.02.01

Abstract

This paper introduces ISAAC (An Interface for Sentence Analysis & Abstraction with Cogitation) which provides an integrated user interface for sentence analysis. Into ISAAC, the various linguistic tools and resources are integrated. They are necessary for sentence analysis. Most of the tools and resources for sentence analysis are developed and accumulated independently. In the sentence analyzing with these tools and resources, it is difficult for sentence analyst to manage and control information which is taken on each step. In this respect, we have integrated the usable tools and resources, and made ISAAC to provide the consistent user oriented interface to each function. We have been able to divide sentence analysis process Into 14 steps. In ISAAC, these steps are processed by four individual modules $\cicled1$syntactic analysis of sentence,$\cicled2$retrieval of a root word,$\cicled3$searching category information in Roget s Thesaurus, and $\cicled4$searching category information in OfN(Ontology for Narratives). Therefore, in case of sentence analysis with ISAAC, the process of total 14 steps falls into 4 steps. This means that it is able to improve the performance of sentence analyst to the extent 3.5 times or more. Furthermore, ISAAC undertaking tedious transcription needed to process each step, we expect that ISAAC can help the analyst to maintain the accuracy of sentence analysis.

본 논문에서 소개할 ISAAC(An Interface for Sentence Analysis & Abstraction with Cogitation)은 문장분석용 통합 사용자 인터페이스를 제공한다. 이 시스템에는 문장 분석 시 필요한 다양한 언어학적 도구와 자원이 통합되어 있다. 문장분석에 가용한 도구와 자원은 대부분 독립적으로 개발 축적된 것들이다. 이들을 활용한 문장분석의 경우, 단계적으로 얻어지는 문장분석 정보들을 문장분석가가 관리, 처리하기에는 어려움이 있다. 이에 본 논문에서는 가용 도구와 자원들을 통합하고, 각 기능들에 대해 사용자 중심의 일관된 인터페이스를 ISAAC이 제공하도록 하였다. 문장분석 처리과정은 총 14단계로 나눌 수 있었다. ISAAC에서는 이 단계들을 독립적인 기능을 가지는 4개의 모듈 - $\cicled1$문장의 통사구조 분석, $\cicled2$원형어휘 판별, $\cicled3$Roget 시소러스 범주정보 검색, $\cicled4$OfN(Ontology for Narratives) 범주정보 검색 - 로 처리하게 되어 있다. 따라서, ISAAC을 활용한 문장분석의 경우, 전체 14단계의 처리과정이 4개의 단계로 줄어든다. 이것은 문장분석가의 작업효율을 3.5배 이상 향상시킨 수 있음을 의미한다. 뿐만 아니라, 각 단계별 처리에 필요한 지루한 정보기록 이전작업을 ISAAC이 담당하게 함으로써 문장분석정보의 정확성도 높일 것으로 예상할 수 있다.

Keywords

References

  1. 김곤, 김민찬, 배재학, 유해영, 이종혁, '문장분석용 통합사용자 인터페이스 ISAAC의 개선', 한국정보처리학회 춘계학술발표대회 논문집, Vol.10, No.1, pp.325-328, 2003
  2. 김명수, 김민찬, 배재학, '문장분석에 활용할 종합적인 사용자 인터페이스', 한국정보처리학회 춘계학술발표대회, Vol.9, No.1, pp.535-538, 2002
  3. 양재군, 배재학, '온톨로지 정보를 이용한 범주 재편성 : Roget 시소러스의 경우', 한국정보처리학회 춘계학술발표대회, Vol.9, No.1, pp.515-518, 2002
  4. Bae,J.H.J., Lee.J.H, 'Topic Sentence Selection with Mid-Depth Understading', Proc. of ICCPOL, pp.199-204, 2001
  5. Bae,J.H.J., Lee.J.H., 'Mid-Depth Text Understanding by Adyctive Chains for Topic Sentence Selection', IJCPOL, Vol.15, No.3, pp.341-357, 2002
  6. Roget's Thesaurus, http://promo.net/cgi-promo/pg/t9.cgi?entry=22&full=yes&ftpsite=ftp://ibiblio.org/pub/docs/books/gutenberg/
  7. Link Grammar, http://www.link.cs.cmu.edu/link/
  8. SWI-Prolog, http://www.swi-prolog.org/
  9. DearAbby, http://www.dearabby.com/
  10. D. Marcu, 'From Discourse Structures to Text Summaries,' in Proc. ACL'97 and EACL'97 Workshop in Untelligent Scalable Text Summarization, Madrid, Spain, pp.82-88, 1997
  11. Proper Names Wordlist, http://clr.nmsu.edu/cgi-bin/Tools.CLR.clrcat#I4
  12. H. Cunningham, Y. Wilks and R. Gaizauskas, 'GATE - a General Architecture for Text Engineering,' In Proceedings of the 16th Conference on Computational Linguistics (COLING-96), Copenhagen, August, 1996
  13. K. Bontcheva, H. Brugman, A. Russel, P. Wittenburg and H. Cunningham, 'An Experiment in Unifying Audio-Visual and Textual Infrastructures for Language Processing R&D,' In Workshop on Using Toolsets and Architectures To Build NLP Systems at COLING-2000, Luxembourg, 2000
  14. B. A. Myers, 'Why are Human-Computer Interfaces Difficult to Design and Implement?,' Technical report CS-93-183, Carnegie Mellon University, School of Computer Science, July, 1993
  15. MINIPAR, http://www.cs.ualberta.ca/~lindeck/
  16. D. Lin, 'Dependency-based Evaluation of MINIPAR,' In Workshop on the Evaluation of Parsing Systems, Granada, Spain, May, 1998
  17. SUSANNE Corpus, http://www.grsampson.net/
  18. Boitet, C. and M. Seligman, 'The Whiteboard Architecture : A Way to Integrate Heterogeneous Components of NLP Systems', Proceedings of COLING, 1994
  19. Melody Y. Ivory and Marti A. Hearst, 'The state of the art in automating usability evaluation of user interfaces', ACM Computing Surveys, Vol.33, No.4, pp.470-516, 2001 https://doi.org/10.1145/503112.503114
  20. W. I. Wittel, Jr. and T. G. Lewis, 'Integrating the MVC paradigm into an object-oriented framework to accelerate GUI Computer Science,' Tech. Rep. 91-60-06, Department of Computer Science, Oregon State University, 1991
  21. H. Cunningham, K. Humphreys, R. Gaizauskas and Y. Wilks, 'Software Infrastructure for Natural Language Processing,' In Proceedings of the Fifth Conference on Applied Natural Language Processing, (ANLP-97), Mar, 1997 https://doi.org/10.3115/974557.974592
  22. Atif M. Memon, Martha E. Pollack and Mary Lou Soffa, 'Hierarchical GUI Test Case Generation Using Automated Planning,' IEEE Transactions on Software Engineering (TSE), Vol.27, No.2, pp.144-155, 2001 https://doi.org/10.1109/32.908959
  23. INUI Takashi and INUI Kentaro, 'Committee-based Decision Making in Probabilistic Partial Parsing', The 18th International Conference on Computational Linguisties, 2000
  24. Jensen, K., G. E. Heidorn, and S. D. Richardson, Natural Language P processing : The PLNLP Approach, Kluwer Academic Publishers, 1993
  25. Apple Pie Parser(version 5.7). http://nlp.cs.nyu.edu/app/
  26. Satoshi Sekine, 'Corpus-based Parsing and Sublanguage Studies,' Ph.D. thesis, New York University, 1998
  27. Penn TreeBank, http://www.cis.upenn.edu/~treebank/home.html