Abstract
In this paper we proposed the novel feature extraction method that is able to extract the individual characters from the license plate area of the car image more precisely by using the RGB color information and the fuzzy binarization newly proposed. The proposed method, first, extracts from the original image the areas that the pixels with the colors around the green are concentrated on as the candidate areas of the license plate, and selects the area with the most intensive distribution of pixels with the white color among the candidate areas as the license plate area. Second the noises of the license plate area should be removed by using 34{\times}$3 Sobel masking, and the fuzzy binarization method are proposed and applied to the license plate area to generate the binarized image of the license plate area. Lastly, the application of the contour tracking algorithm to the binarized area extracts the individual characters from the license plate area. The experiment on a variety of the real car images showed that the proposed method generates the higher rate of success for character extraction than the previous methods.
본 논문에서는 RGB 컬러 정보와 퍼지 이진화를 이용하여 차량 번호판의 개별 문자를 추출하는 방법을 제안한다. 제안된 방법은 비 영업용 차량 영상에서 녹색의 분포가 밀집되어 있는 영역들을 번호판의 후보 영역으로 추출하고 번호판의 후보 영역에서 흰색의 밀집도가 높은 부분을 번호판의 영역으로 선택한다. 개별 문자 추출은 추출된 번호판 영역에서 3${\times}$3소벨 마스크를 이용하여 잡음을 제거하고 퍼지 이진화 방법을 적용하여 번호판의 영역을 이진화한 다음에 윤곽선 추적 알고리즘을 적용하여 개별 문자를 추출한다. 제안된 방법을 실제 비 영업용 차량 번호판에 적용한 결과, 기존의 방법보다 번호판 영역에서 개별 문자의 추출률이 개선된 것을 확인하였다.