A Study on Thermal and Mechanical Interfacial Properties of Difunctional Epoxy/PMMA Blends

이관능성 에폭시/폴리메틸메타크릴레이트 블랜드의 열적 및 기계적 계면 특성

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김기석 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 민병각 (충주대학교 고분자공학과) ;
  • 김영근 ((주)강남전공)
  • Published : 2004.02.01

Abstract

In this work, the blend system prepared from epoky(DGEBA)/polymethylmethacrylate(PMMA) was investigated in thermal and mechanical interfacial property measurements. The thermal properties were carried out by DSC, DMA, and TGA measurements. Also, the surface free energy and fracture toughness were determined by contact angle and critical stress intensity factor($K_{IC}$), respectively. And the fracture surface was observed by SEM after $K_{IC}$ tests. As experimental results, the curing temperature and glass transition temperature were slightly increased in addition of PMMA. Surface free energy of the blends showed an improved value at low contents of PMMA which could be attributed to the both increasings of London dispersive and polar components. From measurement of $K_{IC}$ of the blends, the highest value was found at 5 phr. This was due to the increasing of compatibility or physical interaction in macromolecular chains between DGEBA and PMMA of the blends.

본 연구에서는 이관능성 에폭시(DGEBA)와 polymethylmethacrylate(PMMA)를 블랜딩하여 열적 특성과 기계적 계면특성을 측정하였다. 열적 특성은 DSC, DMA, 그리고 TGA를 이용하였으며, 블랜드의 기계적 계면특성을 측정하기 위해 contact angle로 표면자유에너지를 조사하였고, 파괴인성은 $K_{IC}$로 측정하고 $K_{IC}$ 실험 후 파괴단면을 SEM을 이용하여 관찰하였다. 실험 결과, 경화 온도와 유리전이 온도는 PMMA의 첨가에 의해 증가하는 것을 확인할 수 있었다. 또한 블랜드의 표면자유에너지는 PMMA의 저함량에서 높은 값을 나타내었고, 이는 비극성 요소의 증가와 극성 요소의 존재에 의한 것으로 판단된다. 블랜드의 파괴인성 측정 결과 5 phr에서 최대값을 나타내었다. 이는 DGEBA/PMMA 간의 상용성 또는 거대분자 사슬에서 물리적 결합의 증가에 기인하는 것으로 판단된다.

Keywords

References

  1. Polymer v.36 Cure Kinetics and Morphology of Amine-cured tetraglycidyl-4,4'-diaminodiphenylmethane Epoxy Blends with poly (etherimide) C.S.Chean;E.M.Woo https://doi.org/10.1016/0032-3861(95)94337-S
  2. J. Polym. Sci.: Part B: Polym. Phys. v.39 Thermal Stability and Toughening of Epoxy Resin with Polysulfone Resin S.J.Park;H.C.Kim https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  3. Macromolecules v.34 Thermal Stability of Imidized Epoxy Blends Initiated by N-Benzylpyrazinium Hexafluorozntimonate Salt S.J.Park;H.C.Kim;H.I.Lee;D.H.Suh https://doi.org/10.1021/ma010792x
  4. J. Appl. Polym. Sci. v.42 Rubber-Modified Epoxies. Ⅱ. Influence of the Cure Schedule and Rubber Concentration on the Generated Morphology D.Verchere;J.P.Pascault;H.Sautereau;S.M.Moschiar;C.C.Riccardi;R.J.J.Williams https://doi.org/10.1002/app.1991.070420315
  5. Engineered Material Handbook v.1 H.F.Brinson
  6. Polym. Int. v.47 Viscoelastic Behaviour of Epoxy Resin Modified with Poly (methyl methacrylate) I.Monderagon;P.M.Remiro;M.D.Martin;A.Valea;M.Franco;V.Bellenguer https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<152::AID-PI41>3.0.CO;2-A
  7. J. Appl. Polym. Sci. v.74 Design of Morphology in PMMA-Modified Epoxy Resin by Control of Curing Conditions. Ⅰ. Phase Behavior P.M.Remiro;C.C.Riccardi;M.A.Corcuera;I.Mondragon https://doi.org/10.1002/(SICI)1097-4628(19991024)74:4<772::AID-APP3>3.0.CO;2-S
  8. Polymer v.42 Phase Separation in Liquid Rubber Modified Epoxy Mixture. Relationship Between Curing Conditions, Morphology and Ultimate Behavior D.Ratna https://doi.org/10.1016/S0032-3861(00)00798-9
  9. Polym. J. v.31 Roles of Unsaturated Polyester in the Epoxy Matrix System S.J.Park;W.B.Park;J.R.Lee https://doi.org/10.1295/polymj.31.28
  10. J. Polym. Sci.:Part B: Polym. Phys. v.38 Cure Behavior of Diglycidylether of Bisphenol A/Trimethylolpropane Triglycidylether Epoxy Blends Initiated by Thermal Latent Catalyst S.J.Park;T.J.Kim;J.R.Lee https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  11. J. Appl. Polym. Sci. v.42 Rubber-Modified Epoxies. Ⅲ. Analysis of Experimental Tends through a Phase Separation Model S.M.Moschior;C.C.Riccardi;R.J.J.Williams;D.Verchere;H.Santerean;J.P.Pascault https://doi.org/10.1002/app.1991.070420316
  12. J. Appl. Polym. Sci. v.50 Reaction Mechanisms, Microstructure, and Fracure Properties of Thermoplastic Polysulfone-Modified Epoxy Resin B.G.Min;J.H.Hodgkin;Z.H.Sachurski https://doi.org/10.1002/app.1993.070500615
  13. Polyimide Thermally Stable Polymer L.A.Laius
  14. Polym. Int. v.26 Toughening of Epoxy Resins with Thermoplastics.Ⅱ. Tetrafuntional Epoxy Resin-Polyetherimide Blends D.J.Hourston;J.M.Lane;N.A.MacBeath https://doi.org/10.1002/pi.4990260104
  15. Polymer v.41 Influence of Epoxy Hardner on Miscibility of Blends of Poly (methl methacrylate) and Epoxy Networks S.Ritzenthaler;E.Girard-Reydet;J.P.Pascault https://doi.org/10.1016/S0032-3861(99)00817-4
  16. Polymer v.37 Blends of a Diglycidylether Epoxy with Bisphenol-A Polycarbonate or Poly (methyl methacrylate) : Cases of Miscibility with or without Specific Interactions E.M.Woo;M.N.Woo https://doi.org/10.1016/0032-3861(96)85363-8
  17. Polym. Int. v.48 Blends of Epoxy/anhydride Themosets with a high-molar-mass poly (methylmethacrylate) M.J.Galante;P.A.Oyanguren;K.Andromaque;P.M.Frontini;R.J.J.Williams https://doi.org/10.1002/(SICI)1097-0126(199908)48:8<642::AID-PI207>3.0.CO;2-B
  18. J. Appl. Polym. Sci. v.83 Effect of Polycarbonate-Poly (methyl methacrylate) Graft Copolymer as a Modifier Improving the Surface Hardness of Polycarbonate M.Okamoto https://doi.org/10.1002/app.10251
  19. Polymer v.42 Design of Morphology in PMMA-Modified Epoxy Resin by Control of Curing Conditions. Ⅰ. Phase Behavior P.M.Remiro;C.C.Riccardi;M.A.Corcuera;I.Mondragon https://doi.org/10.1016/S0032-3861(01)00564-X
  20. Polymer v.42 Toughning of epoxy Resin Modified with situ polymerized Thermoplastic Polymers K.Mimura;H.Ito;H.Fujioka https://doi.org/10.1016/S0032-3861(01)00460-8
  21. J. Mater. Sci. v.35 Thermal Stability of Carbon-MoSi2-Carbon Composites by Thermogravimetric Analysis S.J.Park;M.S.Cho https://doi.org/10.1023/A:1004849110311
  22. Anal. Chem. v.35 A New Analysis of Thermogravimetric Traces H.H.Horowitz;G.Metzger https://doi.org/10.1021/ac60203a013
  23. J. Phys. Chem. v.66 Ideal two-dimensional solutions. Ⅱ. A new isotherm for soluble and "gaseous" monolayers F.M.Fowkes https://doi.org/10.1021/j100809a001
  24. Polymer Interface and Adhesion S.Wu