Miniemulsion Polymerization of Poly(vinyl acetate) Nanoparticles Stabilized by Hexadecane

헥사데칸에 의해 안정된 폴리(비닐 아세테이트) 나노입자의 미니유화 중합

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김기석 (한국화학연구원 화학소재연구부)
  • Published : 2004.01.01

Abstract

Poly(vinyl acetate) (PVAc) nanoparticles were synthesized in oil/water miniemulsion polymerization in the presence of low amount of hexadecane as a cosurfactant. The nanoparticles were tested to apply as a drug carrier. The shape of nanoparticles was observed by scanning electron microscopy, and the average particle size and size distribution were examined by particle size analyzer. Inclusion of antibiotic drugs into the nanoparticles was confirmed by CHO, C=O, and OH peak of FT-IR. Size of the nanoparticles were adjusted between 80∼300 nm by changing the homogenization rate and amount of cosurfactant and surfactant. The monomer droplets prepared by miniemulsion method using a cosurfactant were homogeneous and stable compared with those prepared by conventional emulsion polymerization. This might be occurred due to the prevention of Ostwald ripening and coalescence between droplets by using hexadecane as a cosurfactant.

폴리(비닐 아세테이트) (PVAc) 나노입자는 공유화제로 헥사데칸을 사용한 수중유형 미니유화 중합법을 이용하여 제조하였고, 제조 조건에 따른 나노입자는 약물 전달체로서의 가능성을 고찰하였다. 제조된 나노입자의 형태를 SEM으로 관찰하였고, 평균 입자크기와 입자의 분포는 입도 분석기로 측정하였다. 또한 항생제와 함께 제조된 PVAc 나노입자에 대한 항생제의 함입은 FT-IR의 CHO, C=O 그리고 OH 피크로서 확인하였다. 실험 결과, 단량체 입자의 크기는 균일화 속도 및 유화제와 공유화제의 양에 의하여 조절할 수 있었고, 제조된 고분자 라텍스의 입자크기는 80∼300 nm의 분포를 나타내었다. 또한 공유화제를 사용한 미니유화 중합방법은 전통적인 에멀젼 제조 방법과 비교하여 균일하고 안정한 단량체 입자가 형성되는 것을 확인할 수 있었다. 이는 헥사데칸을 공유화제로 사용함으로써 단량체 입자간의 오스트발드 숙성과 유착을 방지 또는 지연시키기 때문인 것으로 판단된다.

Keywords

References

  1. Polymer v.44 M.Barrere;K.Landfester https://doi.org/10.1016/S0032-3861(03)00151-4
  2. Colloids Surf. A v.125 L.Dai;W.Li;X.Hou https://doi.org/10.1016/S0927-7757(96)03859-9
  3. J. Phys.:Condens. Matter v.12 Y.Katsumoto;H.Ushiki;A.Graciaa;J.Lachaise https://doi.org/10.1088/0953-8984/12/3/304
  4. Polymer v.42 N.Sosa;R.D.Peralta;R.G.Lopez;L.E.Ramos;I.Katime;C.Cesteros;E.Mendizabal;J.E.Puig https://doi.org/10.1016/S0032-3861(01)00157-4
  5. Langmuir v.15 X.J.Xu;C.H.Chew;K.S.Siow;M.K.Wong;M.L.Gan https://doi.org/10.1021/la9904152
  6. J. Am. Chem. Soc. v.69 W.D.Harkins https://doi.org/10.1021/ja01198a053
  7. Colloids Surf. A v.138 C.S.Chen;T.J.Chen https://doi.org/10.1016/S0927-7757(97)00360-9
  8. Macromol. Chem. Phys. v.201 K.Landfester;F.Tiarks;H.P.Hentze;M.Antonoetti https://doi.org/10.1002/(SICI)1521-3935(20000101)201:1<1::AID-MACP1>3.0.CO;2-N
  9. Macromol. Symp. v.155 B.Erdem;E.D.Sudol;V.L.Dimonie;M.S.El-Aasser https://doi.org/10.1002/1521-3900(200004)155:1<181::AID-MASY181>3.0.CO;2-2
  10. Langmuir v.16 P.J.Blythe;B.R.Morrison;K.A.Mathauer;E.D.Sudol;M.S.El-Aasser https://doi.org/10.1021/la990126d
  11. Colloids Surf. A v.166 I.Aizpurua;J.I.Amalvy;M.J.Barandiaran https://doi.org/10.1016/S0927-7757(99)00293-9
  12. Organized Solution: Surfactant in Science and Technology H.Sagitani;S.E.Friberg;B.Lindman
  13. Biomacromolecules v.1 S.Kobayashi;H.Uyama;T.Takamoto https://doi.org/10.1021/bm990007c
  14. Toxicology v.180 D.A.Robinson;M.S.Bogdanffy;C.J.Reed https://doi.org/10.1016/S0300-483X(02)00375-X
  15. Polym. Degrad. Stab. S.Chattopadhyay;G.Sivalingam;G.Madras
  16. Polymer(Korea) v.27 S.J.Park;S.H.Kim;J.R.Lee;H.B.Lee;S.K.Hong
  17. J. Polym. Sci. Part A : Polym. Chem. v.38 M.S.Lim;H.Chen https://doi.org/10.1002/(SICI)1099-0518(20000515)38:10<1818::AID-POLA670>3.0.CO;2-N
  18. Prog. Polym. Sci. v.27 J.M.Asua https://doi.org/10.1016/S0079-6700(02)00010-2
  19. Macromolecules v.32 K.Landfester;N.Bechthold;F.Tiarks;M.Antonietti https://doi.org/10.1021/ma990299+
  20. Adv. Colloid Interface Sci. v.38 A.S.Kabalnov;E.D.Shchukin https://doi.org/10.1016/0001-8686(92)80043-W
  21. Polymer v.39 C.S.Chem;T.J.Chen;Y.C.Liou https://doi.org/10.1016/S0032-3861(97)10347-0
  22. Polymer Latexes P.L.Tang;E.D.Sudol;M.E.Adams;C.A.Silebi;M.S.El-Aasser
  23. Ind. Eng. Chem. Res. v.38 C.J.Samer;F.J.Schork https://doi.org/10.1021/ie9807203
  24. Prog. Polym. Sci. v.27 M.Antonietti;K.Landfester https://doi.org/10.1016/S0079-6700(01)00051-X
  25. J. Appl. Polym. Sci. v.76 J.W.Gooch;H.Dong;F.J.Schork https://doi.org/10.1002/(SICI)1097-4628(20000404)76:1<105::AID-APP14>3.0.CO;2-8
  26. Macromol. Rapid Commun. v.22 K.Landfester https://doi.org/10.1002/1521-3927(20010801)22:12<896::AID-MARC896>3.0.CO;2-R
  27. J. Colloid Interface Sci. v.188 S.J.Park;M.Brendle https://doi.org/10.1006/jcis.1997.4763
  28. Colloids Surf. A v.153 F.J.Schork;G.W.Poehlein;S.Wang;J.Reimers;J.Rodrigues;C.Samer https://doi.org/10.1016/S0927-7757(98)00424-5
  29. J. Colloid Interface Sci. v.197 A.Kim;S.J.Park;J.R.Lee https://doi.org/10.1006/jcis.1997.5208
  30. J. Colloid Interface Sci. v.219 S.J.Park;J.R.Lee https://doi.org/10.1006/jcis.1999.6470