Abstract
This paper presents an analysis of heating energy for apartment houses in a Korean-style apartment building, paying special attention on the effect of their location. Six representative locations encompass three floors and two placements on each floor. Two different roof types are also considered. In order to incorporate actual tenant's refit, a five-zone model composed of one conditioned and four unconditioned spaces is developed. TRNSYS 15 is adopted to estimate heating energy. The predicted results show fairly good agreements with the available measured data, validating the present model. Heating energy needed for an apartment located at the uppermost and lowermost floors is far greater compared with the case of intermediate floors. In addition, an appreciable difference is found between apartment with and without side end wall. Insulation thickness of walls, floors and underground structure appears to be a dominant factor affecting heating energy, which leads to needs of revision of the related regulation. Ridged-roofs instead of flat-roofs are highly recommended in apartment buildings for effective energy saving. It is finally concluded that the location-dependent, severe imbalance in heating energy should be improved and/or reflected in the policy making process and design standards.