Abstract
Gaussian selection (GS) is a popular approach in the continuous density hidden Markov model for fast decoding. It enables fast likelihood computation by reducing the number of Gaussian components calculated. In this paper, we propose a new GS method for the phonetic tied-mixture (PTM) hidden Markov models. The PTM model can represent each state of the same topological location with a shared set of Gaussian mixture components and contort dependent weights. Thus the proposed method imposes constraint on the weights as well as the number of Gaussian components to reduce the computational load. Experimental results show that the proposed method reduces the percentage of Gaussian computation to 16.41%, compared with 20-30% for the conventional GS methods, with little degradation in recognition.
가우시안 선택기법은 연속 확률분포를 갖는 HMM음성인식기에서 인식성능을 저하시키지 않으면서 관측확률을 구할 때 계산되는 가우시안의 수를 줄여 효율적인 디코딩을 하기 위해 많이 이용되는 방법이다. 본 논문에서는 PTM 구조를 갖는 HMM에서 관측확률을 계산하는데 필요한 가우시안 함수의 부분집합을 구하는 새로운 가우시안 선택기법을 제안한다. PTM 모델에서는 음성신호의 음향특성에 따라 구분되는 클래스별 가중치와 공통적인 가우시안 집합을 이용하여 각 상태를 나타내는데, 제안한 방법에서는 PTM 구조가 갖는 이러한 특성을 이용하여 인식성능의 저하없이 관측확률 계산에 소요되는 적은 수의 가우시안 부분집합을 구한다. 실험결과 기존의 가우시안 선택기법이 가우시안 선택기법을 적용하지 않았을 경우에 비해 20∼30% 계산량을 필요로 하는데, 제안한 기법은 16.41%의 가우시안 함수 계산만으로도 별다른 인식성능 저하없이 인식 과정을 수행할 수 있었다.