Viscoelastic Modeling of Automotive Bushing for Axial Mode

축방향 모드에 대한 자동차 부싱의 점탄성 모델링

  • Lee, Seong-Beom (School of Mechanical & Automotive Engineering, Inje University) ;
  • Lee, Su-Young (Department of Mechanical Engineering, Graduate School, Inje University)
  • 이성범 (인제대학교 기계자동차공학부) ;
  • 이수용 (인제대학교 대학원 기계공학과)
  • Published : 2004.09.30

Abstract

A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. Since a force-displacement relation for bushings is important for multibody dynamics numerical simulations, the relation is expressed in terms of a force relaxation function and a method of determination by experiments on bushings has been developed. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from experiment. It is shown that the predictions by the proposed force-displacement relation are in very good agreement with the experimental results.

자동차 부싱은 차체로 전달되는 하중을 줄여주는 역할을 하는 자동차 현가장치의 주요 부품으로 바깥쪽 슬리브와 안쪽의 축 사이에서 가운데가 비어있는 실린더의 형상을 가진다. 차축에 작용되는 하중과 부싱의 상대 변위는 비선형 점탄성 성질을 나타내며, 부싱에서 힘과 변위의 관계는 다물체 동역학 시뮬레이션에 매우 중요하다. 본 연구는 실험을 바탕으로 하여, 자동차 부싱에 대한 힘과 변위의 비선형 점탄성 관계를 변위에 의존하는 힘 완화함수로 표현하여 이를 유도하는 방법을 개발하였으며, 완성된 비선형 점탄성 부싱 모델은 ??킨-라저스 모델로 명명하여 실험값과 비교하여 검증하였다.

Keywords

References

  1. Ford Durability Center at The University of Michigan Project Review (1995)
  2. L. Boltzmann, 'Zur Theorie der Elastischen Nachwirkungen', Sitzungsber. Kai-serlich Akad. Wissen Math. Naturwissen, 70, 275 (1874).
  3. J. E. Adkins, and A. N. Gent, 'Load-deflection relations of rubber bush mountings', British Journal of Applied Physics, 5, 354 (1954) https://doi.org/10.1088/0508-3443/5/10/305
  4. B. D. Coleman and W. Noll, 'Foundations of Linear Viscoelasticity', Reviews of Modern Physics, 33, 239 (1961) https://doi.org/10.1103/RevModPhys.33.239
  5. C. W. McGuirt and G. Lianis, 'Constitutive Equations for Viscoelastic Solids under Finite Uniaxial and Biaxial Deformations', Traηsactions of the Society of Rheology, 14:2, 117 (1970)
  6. K. N. Morman, B. G. Kao and J. C. Nagtegaal, 'Finite EIement Analysis of Viscoelastic Elastomeric Structures Vibrating About Nonlinear Statically Stressed Configurations', Fourth International Conferenee on Vehicle Structural Mechanics, Society of Automotive Engineers, Detroit, Michigan, 83 (1981)
  7. A. S. Wineman, T. VanDyke and S. Shi, 'A nonlinear viscoelastic model for one dimensional response of elastomeric bushings', International Journal of Mechanical Sciences, 40, 1295 (1998) https://doi.org/10.1016/S0020-7403(98)00023-X
  8. S. B. Lee, 'A Study of A Nonlinear Viscoelastic Model of Elastomeric Bushing Response' Ph. D. Thesis, The University of Michigan, Ann Arbor, 1997
  9. S. B. Lee, 'A Study of Lianis Model for Elastomeric Bushing in Axial Mode', Ela, stomer, 37:3, 151 (2002)
  10. A. C. Pipkin and T. G. Rogers, 'A Non-Linear Integral Representation for Viscoelastic behavior', J. of the Mechanics and Physics of Solids, 16, 59 (1968) https://doi.org/10.1016/0022-5096(68)90016-1
  11. J. E. Dennis, 'Nonlinear Least Squares and Equations', The State of the Art in Numerical Analysis, Academic Press, New York, 1977