Effect of adrenalectomy on gene expression of adrenoceptor subtypes in the hypothalamic paraventricular nucleus

  • Kam, Kyung-Yoon (Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School) ;
  • Shin, Seung Yub (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Han, Seong Kyu (Center for Neuroendocrinology and Department of Physiology, School of Medical Sciences, The University of Otago) ;
  • Li, Long Hua (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Chong, Wonee (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Baek, Dae Hyun (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, So Yeong (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Ryu, Pan Dong (Department of Pharmacology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University)
  • Accepted : 2004.05.20
  • Published : 2004.06.30

Abstract

It is well known that the hypothalamic-pituitary-adrenocortical (HPA) axis is under the negative feedback control of adrenal corticosteroids. Previous studies have suggested that glucocorticoids can regulate neuroendocrine cells in the paraventricular nucleus (PVN) by modulating catecholaminergic transmission, a major excitatory modulator of the HPA axis at the hypothalamic level. But, the effects of corticosteroids on the expression of adrenoceptor subtypes are not fully understood. In this work, we examined mRNA levels of six adrenoceptor subtypes (${\alpha}_{1A}$, ${\alpha}_{1B}$, ${\alpha}_{2A}$, ${\alpha}_{2B}$, ${\beta}_1$ and ${\beta}_2$) in the PVN of normal and adrenalectomized (ADX) rats. Total RNA ($2.5{\mu}g$) was extracted from PVN micropunches of brain slices ($500{\mu}m$) and analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The levels of corticotropin-releasing hormone (CRH) mRNA were increased in the ADX rats relative to normal rats, indicating that the PVN had been liberated from the negative feedback of corticosteroids. Among the six adrenoceptor subtypes examined, mRNA levels for ${\alpha}_{1B}$- and ${\beta}_1$-adrenoceptors were increased, but the level for ${\beta}_2$-adrenoceptors was decreased in the ADX rats. The mRNA levels for the other three subtypes and for the general and neuronal specific housekeeping genes, glyceroaldehyde-3-phosphate dehydrogenase (GAPDH) and N-enolase, respectively, were not changed in the ADX rats. In conclusion, the results indicate that adrenal steroids selectively regulate the gene expression of adrenoceptor subtypes in the PVN.

Keywords

References

  1. Alexander, S. P. H., Mathie, A. and Peters, J. A. TiPS, Nomenclature supplement, pp. 15-18. Elsevier, Amsterdam, 2001
  2. Bergles, D. E., Doze, V. A., Madison, D. V. and Smith, S. J. Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J. Neurosci. 1996, 16, 572-585
  3. Brank, M., Zajc-Kreft, K., Kreft, S., Komel, R. and Grubic, Z. Biogenesis of acetylcholinesterase is impaired, although its mRNA level remains normal, in theglucocorticoid-treated rat skeletal muscle. Eur. J. Biochem. 1998, 251, 374-381
  4. Cummings, S. and Seybold, V. Relationship of alpha 1- and alpha 2-adrenergic-binding sites to regions of the paraventricular nucleus of the hypothalamus containing corticotropin-releasing factor and vasopressin neurons. Neuroendocrinology. 1988, 47, 523-532
  5. Daftary, S. S., Boudaba, C. and Tasker, J. G. Noradrenergic regulation of parvocellular neurons in the rat hypothalamic paraventricular nucleus. Neuroscience. 2000, 96, 743-751
  6. Daniels, W. M., Jaffer, A., Russell, V. A. and Taljaard, J. J. Alpha 2- and beta-adrenergic stimulation of corticosterone secretion in rats. Neurochem. Res.1993, 18, 159-164
  7. Day, H. E., Campeau, S., Watson, S. J. Jr and Akil, H. Distribution of alpha 1a-, alpha 1b- and alpha 1dadrenergic receptor mRNA in the rat brain and spinalcord. J. Chem. Neuroanat. 1997, 13, 115-139
  8. Day, H. E. W., Campeau, S., Watson, S. J. Jr and Akil, H. Expression of a1b adrenoceptor mRNA in corticotropin-releasing hormone-containing cells of therat hypothalamus and its regulation by corticosterone. J. Neurosci. 1999, 19, 10098-10106
  9. Domyancic, A. V. and Morilak, D. A. Distribution of alpha 1A adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. J. Comp. Neurol.1997, 386, 358-378
  10. Feuvrier, E., Aubert, M., Malaval, F., Szafarczyk, A. and Gaillet, S. Opposite regulation by glucocorticoids of the alpha 1B- and alpha 2A-adrenoreceptor mRNA levels in rat cultured anterior hypothalamic slices. Neurosci. Lett. 1999, 271, 121-125
  11. Gaillet, S., Alonso, G., Le Borgne, R., Barbanel, G., Malaval, F., Assenmacher, I. and Szafarczyk, A. Effects of discrete lesions in the ventral noradrenergicascending bundle on the corticotropic stress response depend on the site of the lesion and on the plasma levels of adrenal steroids, Neuroendocrinology. 1993,58, 408-419
  12. Gaillet, S., Lachuer, J., Malaval, F., Assenmacher, I. and Szafarczyk, A. The involvement of noradrenergic ascending pathways in the stress-induced activation of ACTH and corticosterone secretions is dependent on the nature of stressors. Exp. Brain Res. 1991, 87, 173-180
  13. Gao, B. and Kunos, G. Isolation and characterization of the gene encoding the rat alpha-1B adrenergic receptor. Gene, 1993, 131, 243-247
  14. Hadcock, J. R. and Malbon, C. C. Regulation of betaadrenergic receptors by “permissive” hormones: glucocorticoids increase steady-state levels of receptor mRNA. Proc. Natl. Acad. Sci. U S A. 1988, 85, 8415-8419
  15. Han, S. K., Chong, W., Li, L. H., Lee, I. S., Murase, K. and Ryu, P. D. Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus. J. Neurophysiol. 2002, 87, 2287-2296
  16. Herman, J. P. and Cullinan, W. E. Neurocircuitry of stress: central control of the hypothalamo-pituitaryadrenocortical axis. Trends Neurosci. 1997, 20, 78-84
  17. Jhanwar-Uniyal, M. and Leibowitz, S. F. Impact of circulating corticosterone on alpha 1- and alpha 2- noradrenergic receptors in discrete brain areas. Brain Res. 1986, 368, 404-408
  18. Jiang, L. and Kunos, G. Sequence of the 5’ regulatory domain of the gene encoding the rat beta-2-adrenergic receptor. Gene, 1995, 163, 331-332
  19. Joe, I. and Ramirez, V. D. Binding of estrogen and progesterone-BSA conjugates to glyceraldehyde-3- phosphate dehydrogenase (GAPDH) and the effects of the free steroids on GAPDH enzyme activity: physiological implications. Steroids, 2001, 66, 529-538
  20. Kiely, J., Hadcock, J. R., Bahouth, S. W. and Malbon, C. C. Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene. Biochem. J. 1994, 302, 397-403
  21. Kunos, G., Ishac, E. J., Gao, B. and Jiang, L. Inverse regulation of hepatic alpha 1B- and beta2-adrenergic receptors. Cellular mechanisms and physiologicalimplications. Ann. N. Y. Acad. Sci. 1995, 757, 261-271
  22. Kunos, G., Kunos, I., Hirata, F. and Ishac, E. J. Adrenergic receptors: possible mechanism of inverse regulation of alpha and beta receptors. J. Allergy Clin.Immunol. 1985, 76, 346-351
  23. Li, H. Y., Ericsson, A. and Sawchenko, P. E. Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms. Proc. Natl. Acad. Sci. U S A. 1996, 93, 2359-2364
  24. Little, K. Y., Duncan, G. E., Breese, G. R. and Stumpf, W. E. Beta-adrenergic receptor binding in human and rat hypothalamus. Biol. Psychiatry, 1992, 32, 512-522
  25. McCormick, D. A. and Prince, D. A. Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J. Neurophysiol. 1988, 59, 978-996
  26. McCune, S. K., Voigt, M. M. and Hill, J. M. Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain. Neuroscience, 1993, 57, 143-151
  27. Palkovits, M. and Brownstein, M. J. Microdissection of brain areas by the punch technique; In Brain Microdissection Technique, Cuello, A.C. (eds), pp. 1-36, Wiley, New York. 1983
  28. Pan, Z. Z., Grudt, T. J. and Williams, J. T. Alpha 1-adrenoceptors in rat dorsal raphe neurons: regulation of two potassium conductances. J. Physiol. 1994, 478Pt 3, 437-447
  29. Pieribone, V. A., Nicholas, A. P., Dagerlind, A. and Hokfelt, T. Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experimentsutilizing subtype-specific probes. J. Neurosci. 1994, 14, 4252-4268
  30. Plotsky, P. M., Cunningham, E. T. Jr. and Widmaier, E. P. Catecholaminergic modulation of corticotropinreleasing factor and adrenocorticotropin secretion.Endocr. Rev. 1989, 10, 437-458
  31. Richardson-Morton, K. D., Van de Kar, L. D., Brownfield, M. S., Lorens, S. A., Napier, T. C. and Urban, J. H. Stress-induced renin and corticosterone secretion is mediated by catecholaminergic nerve terminals in the hypothalamic paraventricular nucleus. Neuroendocrinology, 1990, 51, 320-327
  32. Sakaue, M. and Hoffman, B. B. Glucocorticoids induce transcription and expression of the alpha 1B adrenergic receptor gene in DTT1 MF-2 smooth muscle cells. J. Clin. Invest. 1991, 88, 385-389
  33. Sanne, J. L., Scarna, H., Grange, E. and Bobillier, P. Restraint stress and adrenalectomy do not affect the level of rat cerebral enolase. Neurosci. Lett. 1990, 119, 94-96
  34. Saphier, D. and Feldman, S. Iontophoretic application of glucocorticoids inhibits identified neurones in the rat paraventricular nucleus. Brain Res. 1988, 453, 183-190
  35. Sawchenko, P. E. Evidence for a local site of action for glucocorticoids in inhibiting CRF and vasopressin expression in the paraventricular nucleus. Brain Res. 1987, 403, 213-223
  36. Stone, E. A., Egawa, M. and Colbjornsen, C. M. Catecholamine-induced desensitization of brain beta adrenoceptors in vivo and reversal by corticosterone. Life Sci. 1989, 44, 209-213
  37. Subramaniam, M., Colvard, D., Keeting, P. E., Rasmussen, K., Riggs, B. L. and Spelsberg, T. C. Glucocorticoid regulation of alkaline phosphatase, osteocalcin, and proto-oncogenes in normal human osteoblast-like cells. J. Cell. Biochem. 1992, 50, 411-424
  38. Szafarczyk, A., Feuvrier, E., Siaud, P., Rondouin, G., Lacoste, M., Gaillet, S., Malaval, F. and Assenmacher, I. Removal of adrenal steroids from the mediumreverses the stimulating effect of catecholamines on corticotropin-releasing hormone neurons in organotypic cultures. Neuroendocrinology, 1995, 61, 517-524
  39. Szafarczyk, A., Malaval, F., Laurent, A., Gibaud, R. and Assenmacher, I. Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology, 1987, 121, 883-892
  40. Williams, A. M. and Morilak, D. A. Alpha 1B adrenoceptors in rat paraventricular nucleus overlap with, but do not mediate, the induction of c-Fos expression by osmotic or restraint stress. Neuroscience, 1997, 76, 901-913