DOI QR코드

DOI QR Code

Isolation and Molecular Characterization of a New CRT Binding Factor Gene from Capsella bursa-pastoris

  • Wang, Xinglong (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University) ;
  • Liu, Li (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University) ;
  • Liu, Sixiu (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University) ;
  • Sun, Xiaoqing (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University) ;
  • Deng, Zhongxiang (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University) ;
  • Pi, Yan (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University) ;
  • Sun, Xiaofen (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University) ;
  • Tang, Kexuan (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Morgan-Tan International Center for Life Sciences, Fudan University)
  • Published : 2004.09.30

Abstract

A new CRT binding factor (CBF) gene designated Cbcbf25 was cloned from Capsella bursa-pastoris, a wild grass, by the rapid amplification of cDNA ends (RACE). The full-length cDNA of Cbcbf25 was 898 bp with a 669 bp open reading frame (ORF) encoding a putative DRE/CRT (LTRE)-binding protein of 223 amino acids. The predicted CbCBF25 protein contained a potential nuclear localization signal (NLS) in its N-terminal region followed by an AP2 DNA-binding motif and a possible acidic activation domain in the C-terminal region. Bioinformatic analysis revealed that Cbcbf25 has a high level of similarity with other CBF genes like cbf1, cbf2, and cbf3 from Arabidopsis thaliana, and Bncbf5, Bncbf7, Bncbf16, and Bncbf17 from Brassica napus. A cold acclimation assay showed that Cbcbf25 was expressed immediately after cold triggering, but this expression was transient, suggesting that it concerns cold acclimation. Our study implies that Cbcbf25 is an analogue of other CBF genes and may participate in cold-response, by for example, controlling the expression of cold-regulated genes or increasing the freezing tolerance of plants.

Keywords

References

  1. Bird, G. H., Lajmi, A. R. and Shin, J. A. (2002) Sequencespecific recognition of DNA by hydrophobic, Alanine-Rich mutants of the basic region/Leucine zipper motif investigated by fluorescence anisotropy. Biopolymers 65, 10-20. https://doi.org/10.1002/bip.10205
  2. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B., Hong, X., Agarwal, M. and Zhu, J. K. (2003) ICE1: a regulator of coldinduced transcriptome and freezing tolerance in Arabidopisis. Genes Dev. 17, 1043-1054. https://doi.org/10.1101/gad.1077503
  3. Choi, D. W., Rodriguez, E. M. and Close, T. J. (2002) Barley CBF3 gene identification, expression pattern, and map location. Plant Physiol. 129, 1781-1787. https://doi.org/10.1104/pp.003046
  4. Fowler, S. and Thomashow, M. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675-1690. https://doi.org/10.1105/tpc.003483
  5. Gao, M. J., Allard, G., Byass, L., Flanaganl, A. M. and Singh, J. (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol. Biol. 49, 459-471. https://doi.org/10.1023/A:1015570308704
  6. Gilmour, S. J., Artus, N. N. and Thomashow, M. F. (1992) cDNA sequence analysis and expression of two cold regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18, 13-21. https://doi.org/10.1007/BF00018452
  7. Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B. and Zhu, J. K. (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA 99, 11507-11512. https://doi.org/10.1073/pnas.172399299
  8. Guy, C. L. (1990) Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187-223. https://doi.org/10.1146/annurev.pp.41.060190.001155
  9. Hahn, S. (1993) Structure and function of acidic transcription activators. Cell 72, 481-483. https://doi.org/10.1016/0092-8674(93)90064-W
  10. Hsieh, T. H., Lee, J. T., Yang, P. T., Chiu, L. H., Charng, Y. Y., Wang, Y. C. and Chan, M. T. (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129, 1086-1094. https://doi.org/10.1104/pp.003442
  11. Jagglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O. and Thomashow, M. F. (1998) Arabidopsis cbf1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106. https://doi.org/10.1126/science.280.5360.104
  12. Jagglo-Ottosen, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J. Z., Deits, T. and Thomashow, M. F. (2001) Components of the Arabidopsis C-repeat/dehydrationresponsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127, 910-917. https://doi.org/10.1104/pp.010548
  13. Kennelly, P. J. and Krebs, E. G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15555-15558.
  14. Knight, H., Veale, E. L., Warren, G. J. and Knight, M. R. (1999) The sfr6 mutation in Arabidopsis suppresses lo2-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11, 875-886.
  15. Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B. and Zhu, J. K. (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING figure protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 15, 912-924. https://doi.org/10.1101/gad.866801
  16. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406. https://doi.org/10.1105/tpc.10.8.1391
  17. Medina, J., Bargues, M., Terol, J., Perez-Alonso, M. and Salinas, J. (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol. 119, 463-470. https://doi.org/10.1104/pp.119.2.463
  18. Mohapatra, S. S., Wolfraim, L., Poole, R. J., and Dhindsa, R. S. (1989) Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol. 89, 375-380. https://doi.org/10.1104/pp.89.1.375
  19. Mushegian, A. R. and Koonin, E. V. (1996) Sequence analysis of eukaryotic developmental proteins: ancient and novel domains. Genetics 144, 817-28.
  20. Ohme-Takagi, M. and Shinshi, H. (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7, 173-182. https://doi.org/10.1105/tpc.7.2.173
  21. Okamuro, J. K., Caster, B., Villarroel, R., Van Montagu, M. and Jofuku, D. K. (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA 13, 7076-7081.
  22. Shinozaki, K. and Yamaguchi-Shinozaki, K. (1996) Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161-167. https://doi.org/10.1016/S0958-1669(96)80007-3
  23. Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035-1040. https://doi.org/10.1073/pnas.94.3.1035
  24. Tahtiharju, S. and Palva, T. (2001) Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 26, 461-470. https://doi.org/10.1046/j.1365-313X.2001.01048.x
  25. Thomashow, M. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571-99. https://doi.org/10.1146/annurev.arplant.50.1.571
  26. Thomashow, M. (2001) So what's new in the field of plant cold acclimation? Lots! Plant Physiol. 125, 89-93. https://doi.org/10.1104/pp.125.1.89
  27. Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. https://doi.org/10.1105/tpc.6.2.251

Cited by

  1. Isolation and Characterization of a C-repeat Binding Transcription Factor from Maize vol.50, pp.8, 2008, https://doi.org/10.1111/j.1744-7909.2008.00683.x
  2. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris vol.8, 2017, https://doi.org/10.3389/fpls.2017.01388
  3. ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty vol.30, pp.10, 2011, https://doi.org/10.1007/s00299-011-1103-1
  4. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.) vol.224, pp.4, 2006, https://doi.org/10.1007/s00425-006-0273-5
  5. Molecular cloning and characterization of cold-responsive gene Cbrci35 from Capsella bursa-pastoris vol.62, pp.6, 2007, https://doi.org/10.2478/s11756-007-0145-x
  6. CBF-dependent signaling pathway: A key responder to low temperature stress in plants vol.31, pp.2, 2011, https://doi.org/10.3109/07388551.2010.505910