COXETER ALGEBRAS AND PRE-COXETER ALGEBRAS IN SMARANDACHE SETTING

  • KIM, HEE SIK (Department of Mathematics Hanyang University) ;
  • KIM, YOUNG HEE (Department of Mathematics Institute for Basic Science Chungbuk National University) ;
  • NEGGERS, J. (Department of Mathematics University of Alabama)
  • Received : 2004.09.11
  • Published : 2004.12.25

Abstract

In this paper we introduce the notion of a (pre-)Coxeter algebra and show that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. Moreover, we prove that the class of Coxeter algebras and the class of B-algebras of odd order are Smarandache disjoint. Finally, we show that the class of pre-Coxeter algebras and the class of BCK-algebras are Smarandache disjoint.

Keywords

Acknowledgement

Supported by : Chungbuk National University

References

  1. Smarandache disjoint in BCK/d-algebras Allen, P.J.;Kim, H.S.;Neggers, J.
  2. Quasigroups and Related systems v.8 On B-algebras and quasigroups Cho, Jung R.;Kim, H.S.
  3. Math. Seminar Notes v.11 On BCH-algebras Hu, Qing Ping;Li, Xin
  4. Math. Japonica v.30 On proper BCH-algebras Hu, Qing Ping;Li, Xin
  5. Math. Japnica v.23 An introduction to theory of BCK-algebras Iseki, K.;Tanaka, S.
  6. Math. Seminar Notes v.8 On BCI-algebras Iseki, K.
  7. Sci. Mathematicae v.1 On BH-algebras Jun, Y.B.;Roh, E.H.;Kim, H.S.
  8. BCK-algebras Meng, J.;Jun, Y.B.
  9. Math. Slovaca v.49 On d-algebras Neggers, J.;Kim, H.S.
  10. Mate. Vesnik v.54 On B-algebras Neggers, J.;Kim, H.S.
  11. ${\S}semirings$, semifield, and semivector spaces Kandasamy, W.B.V.