The Atom of Evolution

  • Published : 2004.12.01

Abstract

The main mechanism of evolution is that biological entities change, are selected, and reproduce. We propose a different concept in terms of the main agent or atom of evolution: in the biological world, not an individual object, but its interactive network is the fundamental unit of evolution. The interaction network is composed of interaction pairs of information objects that have order information. This indicates a paradigm shift from 3D biological objects to an abstract network of information entities as the primary agent of evolution. It forces us to change our views about how organisms evolve and therefore the methods we use to analyze evolution.

Keywords

References

  1. Albert, R., Jeong, H., and Barabasi, A.L. (2000). Error and attack tolerance of complex networks. Nature 406, 378-382 https://doi.org/10.1038/35019019
  2. Albert, R. and Othmer, H.G., (2003). The topology of the regulat- ory interactions predicts the expression pattern of the seg- ment polarity genes in Drosophila melanogaster. J.Theor. Biol. 223, 1-18 https://doi.org/10.1016/S0022-5193(03)00035-3
  3. Albert, R. and Baraba'si, A.-L (2002). Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47-97 https://doi.org/10.1103/RevModPhys.74.47
  4. Batagelj, V. and Mrvar, A. (2001). Pajek-analysis and visualization of large networks. LNCS 2265, 477-478
  5. Bolser, D.M. and Park, J. (2003). Biological Network Evolution Hypothesis Applied to Protein Structural Interactome. Genomics & Informatics 7-19
  6. Bolser, D., Panos, D, Harrington, R., Park, J., and Schroeder, M., (2003). Visualisation and Graph- theoretic Analysis of a Large-scale Protein Structural Interactome., BMC Bioinformatics 445, 1471-2105
  7. Bray, D. (1995). Protein molecules as computational elements in living cells. Nature 376, 307-312 https://doi.org/10.1038/376307a0
  8. Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J., and Huang, E.S. (2004). Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Science 13, 190-202 https://doi.org/10.1110/ps.03323604
  9. Chia, J.M, and Kolatkar, P.R. (2004). Implications for domain fusn protein-protein interactions based on structuralio information. BMC Bioinformatics 26, 161 (Epub ahead of print)
  10. Chothia, C. and Janin, J. (1975). Principles of protein-protein recognition. Nature 256, 705-708 https://doi.org/10.1038/256705a0
  11. Chothia, C. (1976). The nature of the accessible and buried surfaces in proteins. J.MoI.BioI. 105, 1-14 https://doi.org/10.1016/0022-2836(76)90191-1
  12. Darwin, C. (1859). On the origins of species, London, http://pages.britishlibrary.net/charles.darwin/texts/origin1859/origin_fm.html
  13. Doolittle, R.F., Feng, D.F., Tsang, S., Cho, G., and Little, E., (1996). Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock. Science 27-1, 470-477
  14. Enright, A.J., Iliopoulos, I., Kyrpides, N.C., and Ouzounis, C.A. (1999). Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86-90 https://doi.org/10.1038/47056
  15. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome, Y. Proc. Natl. Acad. Sci. USA 98, 4569-4574. Epub https://doi.org/10.1073/pnas.061034498
  16. Jones, S. and Thornton, J.M. (1997). Analysis of Protein-protein interaction sites using surface patches. J.MoI.Biol. 272, 121-132 https://doi.org/10.1006/jmbi.1997.1234
  17. Jones, S. and Thornton, J.M. (1997). Principle of protein- protein interactions. Proc. Natl. Acad. Sci. USA 93, 13-20 https://doi.org/10.1073/pnas.93.1.13
  18. Jones, S., Marin, A., and Thornton, J.M. (2000). Protein domain interfaces: characterization and comparison with oligomeric protein interfaces. Protein Engineering 13, 77-82 https://doi.org/10.1093/protein/13.2.77
  19. Ju, B.H., Park, B., Park J.H., and Han K. (2003). Visualization and analysis of protein interactions. Bioinformatics 19, 317-318 https://doi.org/10.1093/bioinformatics/19.2.317
  20. Gagneur, J, Krause, R., Bouwmeester, T., and Casari, G. (2004). Modular decomposition of protein-protein interaction networks. Genome Biol. 5, R57. Epub https://doi.org/10.1186/gb-2004-5-8-r57
  21. Gardiner, K., Davisson M.T., and Crnic, L.S. (2004). Building protein interaction maps for Down's syndrome. Brief Funct Genomic Proteomic 3, 142-156 https://doi.org/10.1093/bfgp/3.2.142
  22. Lu, H., Zhu, X., Liu, H., Skoger$\phi$, G., Zang, L., Zang, Y., Cai, L., Zhao, Y., Sun, S., Xu, J., Bu, D., and Chen, R. (2004). The interactome as a tree-an attempt to visualize the protein-protein interaction network in yeast. Nucleic Acids Research 32, 4804-4811 https://doi.org/10.1093/nar/gkh814
  23. Iragne, F., Nikolski, M., Mathieu, B., Auber, D., and Sherman D. (2004). ProViz: Protein Interaction Visualization and Exploration. Bioinformatics (Epub ahead of print)
  24. Jeong, H., Mason, S.P., Barabasi, A.L., and Oltvai, Z.N. (2001). Lethality and centrality in protein networks. Nature 411, 41-42 https://doi.org/10.1038/35075138
  25. Kim, W., Bolser, D.M., and Park, J., (2004). Large scale co-evolution analysis of Protein Structural Interlogues using the global Protein Structural Interactome Map (PSIMAP). Bioinformatics 20, 1138-1150 https://doi.org/10.1093/bioinformatics/bth053
  26. Kim, H., Park, J., and Han, K, (2003). Predicting Protein Interactions in Human by Homologous Interactions in Yeast. Lecture Notes in Computer Science 2637, 159-165 https://doi.org/10.1007/3-540-36175-8_16
  27. Lappe, M., Park, J., Niggemann, 0., and Holm, L. (2001). Generating protein interaction maps from incomplete data: application to Fold assignment. Bioinformatics VoI.17 SuppI.1, S149-S156 https://doi.org/10.1093/bioinformatics/17.2.149
  28. Lehner, B. and Fraser, F. (2004). A first-draft human protein-interaction map. Genome Biology 5:R63 doi:10.1186/ gb-2004-5-9-r63
  29. Lawrence, M.C. and Colman, P.M. (1993). Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946-950 https://doi.org/10.1006/jmbi.1993.1648
  30. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., and Eisenberg, D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751-753 https://doi.org/10.1126/science.285.5428.751
  31. Miller, S., Janin, J., Lesk, A.M., and Chotia, C. (1987). Interior and surface of monomeric proteins. J. Mol. Biol. 196, 641-656 https://doi.org/10.1016/0022-2836(87)90038-6
  32. Moon, H.S., Bhak, J., Lee, K.H., and Lee, D. (2005). Architecture of Basic Building Blocks in Protein and Domain Structural Interaction Networks. Bioinformatics (in press)
  33. Ng, S.K. and Tan, S.H. (2004). Discovering protein-protein interactions. J. Bioinform Comput. Biol. 1, 711-741 https://doi.org/10.1142/S0219720004000600
  34. Park, J., Dietmann, S., Heger, A., and Holm, L. (2000). Estimating the significance of sequence order in protein secondary structure prediction. Bioinformatics 16, 978-987 https://doi.org/10.1093/bioinformatics/16.11.978
  35. Park, J. and Bolser, D., (2001). Conservation of protein interaction network in evolution. Genome Informatics 12, 135-140
  36. Park, J., Lappe, M., and Teichmann, S.A. (2001). Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast. J. Mol. Biol. 30, 307, 929-938
  37. Poupon, A. (2004). Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr. Opio. Stru. Biol. 14, 1-9 https://doi.org/10.1016/j.sbi.2004.01.007
  38. Promislow, D.E. (2004). Protein networks, pleiotropy and the evolution of senescence. Proc. R. Soc. Lond. B. Biol. Sci. 271, 1225-1234 https://doi.org/10.1098/rspb.2004.2732
  39. Raicu V., Jansma D.B., Miller R.J., and Friesen J.D. (2004). Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem J. Sep 7;Pt. (Epub ahead of print)
  40. Richard, F.M. (1974). The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1-14 https://doi.org/10.1016/0022-2836(74)90570-1
  41. Richards, F.M. (1977). Area, volumes, Packing and protein structures, Ann. Rev. Biophys. Bioeng. 6, 151-176 https://doi.org/10.1146/annurev.bb.06.060177.001055
  42. Varshney A., Brooks, F., and Richardson, D. (1995). Defining, Computing, and Visualizing Molecular Interfaces. Proceedings IEEE Visualization 95, 36-43
  43. Sanchez, C., Lachaize, C., Janody, F., Bellon, B., Roder, L, Euzenat, J., Rechenmann, F., and Jacq, B. (1999). Grasping at molecular interactions and genetic networksin Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res. 27, 89-94 https://doi.org/10.1093/nar/27.1.89
  44. Schof, J.W. (1993). Microfossils of the EarIy Archean Apex Chert: New Evidence of the Antiquity of life. Science 260, 640-646 https://doi.org/10.1126/science.260.5108.640
  45. Searls, D.B. (1993). The Computational Linguistics of Biological Sequences, In Artificial Intelligence and Molecular Biology, L. Hunter, ed. (AAAI Press) PP.47-120
  46. Uetz, P., Giot, L, Cagney, G., Mansfield, T.A., Judson, RS., Knight, J.R., Lockshon, D., Narayan, V., Shnivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J.M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627 https://doi.org/10.1038/35001009
  47. Walhout, A.J., Boulton, S.J., and Vidal, M. (2000). Yeast two hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17, 88-94 https://doi.org/10.1002/1097-0061(20000630)17:2<88::AID-YEA20>3.0.CO;2-Y