Changes of Gene Expression in NIH3T3 Cells Exposed to Osmotic and Oxidative Stresses

  • Lee, Jae-Seon (ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, BK21 Human Life Science, Seoul National University College of Medicine) ;
  • Jung, Ji-Hun (ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Kim, Tae-Hyung (ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Seo, Jeong-Sun (ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine)
  • Published : 2004.06.01

Abstract

Cells consistently face stressful conditions, which cause them to modulate a variety of intracellular processes and adapt to these environmental changes via regulation of gene expression. Hyperosmotic and oxidative stresses are significant stressors that induce cellular damage, and finally cell death. In this study, oligonucleotide microarrays were employed to investigate mRNA level changes in cells exposed to hyperosmotic or oxidative conditions. In addition, since heat shock protein 70 (HSP70) is one of the most inducible stress proteins and plays pivotal role to protect cells against stressful condition, we performed microarray analysis in HSP70-overexpressing cells to identify the genes expressed in a HSP70-dependent manner. Under hyperosmotic or oxidative stress conditions, a variety of genes showed altered expression. Down­regulation of protein phosphatase1 beta (PP1 beta) and sphingosine-1-phosphate phosphatase 1 (SPPase1) was detected in both stress conditions. Microarray analysis of HSP70-overexpressing cells demonstrated that diverse mRNA species depend on the level of cellular HSP70. Genes encoding Iysyl oxidase, thrombospondin 1, and procollagen displayed altered expression in all tested conditions. The results of this study will be useful to construct networks of stress response genes.

Keywords

References

  1. Abe, T., Yamamura, K., Gotoh, S., Kashimura, M., and Higashi, K. (1998). Concentration-dependent differential effects of N-acetyI-L-cysteine on the expression of HSP70 and metallothionein genes induced by cadmium in human amniotic cells. Biochim Biophys Acta 1380, 123-132 https://doi.org/10.1016/S0304-4165(97)00144-X
  2. Amador, F. C., Henriques, A. G., Da Cruz E Silva, O. A., and Da Cruz E Silva, E. F. (2004). Monitoring protein phosphatase 1 isoform levels as a marker for cellular stress. Neurotoxicol Teratol. 26, 387-395 https://doi.org/10.1016/j.ntt.2003.12.007
  3. Ann Elzie, C. and Murphy-Ullrich, J. E. (2004). The Nterminus of thrombospondin: the domain stands apart. Int. J. Biochem. Cell. Biol. 36, 1090-1101 https://doi.org/10.1016/j.biocel.2003.12.012
  4. Beere, H.M., Wolf, B.B., Cain, K., Mosser, D.D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R.l., Cohen, F.M, and Green, D.R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell. Biol. 2, 469-475 https://doi.org/10.1038/35019501
  5. Cai, Q., Ferraris, J. D., and Burg, M. B. (2004). Greater tolerance of renal medullary cells for a slow increase in osmolality is associated with enhanced expression of HSP70 and other osmoprotective genes. American J. Physiol. Renal Physiol. 286, F58-67 https://doi.org/10.1152/ajprenal.00037.2003
  6. Curran, J.E., Weinstein, S.R., and Griffiths, L.R. (2002). Polymorphic variants of NFKBlA and its inhibitory protein NFKBIA, and their involvement in sporadic breast cancer. Cancer Lett. 188, 103-107 https://doi.org/10.1016/S0304-3835(02)00460-3
  7. Ding, G. R., Honda, N., Nakahara, T., Tian, F., Yoshida, M., Hirose, H., and Miyakoshi, J. (2003). Radiosensitization by inhibition of lkappaB-alpha phosphorylation in human glioma cells. Radiat. Res. 160, 232-237 https://doi.org/10.1667/RR3018
  8. Espey, L. L., Ujioka, T., Okamura, H., and Richards, J. S. (2003). Metallothionein-1 messenger RNA transcription in steroid-secreting cells of the rat ovary during the periovulatory period. Biol. Reprod. 68, 1895-1902 https://doi.org/10.1095/biolreprod.102.013557
  9. Fukamachi, Y., Karasaki, Y., Sugiura, T., ltoh, H., Abe, T., Yamamura, K., and Higashi, K. (1998). Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the BcI-2/Bax ratio. Biochem. Biophys. Res. Com. 246, 364-369 https://doi.org/10.1006/bbrc.1998.8621
  10. Gelse, K., Poschl, E., and Aigner, T. (2003). Collagensstructure, function, and biosynthesis. Adv Drug Deliv. Rev. 55, 1531-1546 https://doi.org/10.1016/j.addr.2003.08.002
  11. Hartl, F.U. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571-579 https://doi.org/10.1038/381571a0
  12. J$\"a$$\"a$ttel$\"a$, M. (1999). Heat shock proteins as cellular lifegards. Trends Mol. Med. 31, 261-271
  13. Johnson, K. R., Johnson, K. Y., Becker, K. P., Bielawski, J., Mao, C., and Obeid, L. M. (2003). Role of human SPPase in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J. Biol. Chem. 278, 34541-34547 https://doi.org/10.1074/jbc.M301741200
  14. Kagan, H. M. and Li, W. (2003). Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell Biochem. 88, 660-672 https://doi.org/10.1002/jcb.10413
  15. Kemp, T.J., Causton, H.C., and Clerk, A. (2003). Changes in gene expression induced by H2O2 in cardiac myocytes. Biochem. Biophys. Res. Com. 307, 416-421 https://doi.org/10.1016/S0006-291X(03)01215-4
  16. K$\"u$ltz, D. and Csonka, L. (1999). What sets the TonE during osmotic stress? Proc. Natl. Acad. Sci. USA. 96, 1814-1816 https://doi.org/10.1073/pnas.96.5.1814
  17. Lee, M., Song, S. U., Ryu, J. K, and Suh, J. K. (2004). Sp-1-dependent regulation of the tissue inhibitor of metalloproteinases-1 promoter. J. CeII Biochem. 91, 1260-1268 https://doi.org/10.1002/jcb.20021
  18. Li, C.-Y., Lee, J.-S., Ko, Y.-G., Kim, J.-I., and Seo, J.-S. (2000a). Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem. 275, 25665-25671 https://doi.org/10.1074/jbc.M906383199
  19. Li, P. A., He, Q., Cao, T., Yong, G., Szauter, K. M., Fong, K. S., Karlsson, J., Keep, M. F., and Csiszar, K. (2004). Upregulation and altered distribution of lysyl oxidase in the central nervous system of mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Brain Res. Mol. Brain Res. 120, 115-122 https://doi.org/10.1016/j.molbrainres.2003.10.013
  20. Li, W., Liu, G., Chou, I. N., and Kagan, H. M. (2000b). Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J. Cell Biochem. 78, 550-557 https://doi.org/10.1002/1097-4644(20000915)78:4<550::AID-JCB4>3.0.CO;2-8
  21. Li, X., Chen, H., and Epstein, P. N. (2004). Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J. Biol. Chem. 279, 765-771 https://doi.org/10.1074/jbc.M307907200
  22. Ma, S., Charron, J., and Erikson, R.L. (2003). Role of Plk2(Snk) in mouse development and cell proliferation. Mol. CeII BioI. 23, 6936-6943 https://doi.org/10.1128/MCB.23.19.6936-6943.2003
  23. Mandala, S. M. (2001). Sphingosine-1-Phosphate Phosphatases. Prostaglandins 64, 143-156 https://doi.org/10.1016/S0090-6980(01)00111-3
  24. Morimoto, R.I., Sarge, K.D., and Abravaya, K. (1992). Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J. Biol. Chem. 267, 21987-21990
  25. Saleh, A., Srinivasula, S.M., Balkirt, L., Robbins, P.D., and Alnemri, E.S. (2000). Negative regulation of the Apaf-1 aoptosome by Hsp70. Nature Cell Biol. 2, 476-483 https://doi.org/10.1038/35019510
  26. Siwik, D. A. and Colucci. W. S. (2004). Regulation of matrix metalloproteinases by cytokines and eactive oxygen/itrogen species in the myocardium. Heart Fail Rev., 9,43-51 https://doi.org/10.1023/B:HREV.0000011393.40674.13
  27. Tanaka, K., Jay, G., and Isselbacher, K.J. (1988). Expression of heat-shock and glucose-regulated genes: differential effects of glucose starvation and hypertonicity. Biochim. Biophys. Acta 950, 138-146 https://doi.org/10.1016/0167-4781(88)90006-1
  28. Todd, D. E., Densham, R. M., Molton, S. A., Balmanno, K., Newson, C., Weston, C. R., Garner, A. P., Scott, L., and Cook, S. J. (2004). ERK1/2 and p38 cooperateto inducea p21(CIP1)-dependent G(1) cell cycle arrest. Oncogene 23, 3284-3295 https://doi.org/10.1038/sj.onc.1207467
  29. Wanpen, S., Govitrapong, P., Shavali, S., Sangchot, P., and Ebadi, M. (2004). Salsolinol, a dopamine-derived tetrahydroisoquinoline, induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein. Brain Res. 1005, 67-76 https://doi.org/10.1016/j.brainres.2004.01.054