Informative Gene Selection Method in Tumor Classification

  • Lee, Hyosoo (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Jong Hoon (Department of Biological Science, Sookmyung Women's University)
  • Published : 2004.03.01

Abstract

Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.

Keywords

References

  1. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lassos, I. S., Rosenwald, A, BoIdrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J., Jr" Lu, L., Lewis, D. B., Tibshirani, R, Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R, Levy, R, Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P.O., and Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511Ā삟?⨀Ā삟?⨀ࠀࠀ椀대჉?⨀ᕖࠄఀ܀ᣌᆭĀ삟?⨀Ā삟?⨀椀대飉?⨀ᕖࠄఀ܀ᇌᆭĀ삟?⨀Ā삟?⨀椀대Ê?⨀ᕖࠄ䐀Ā჌ᆭĀ삟?⨀Ā삟?⨀넀댐棊?⨀띑ࠄᣋ?⨀㣞?⨀̀̀耀 ㌀띑ࠄ⃋?⨀룏?⨀ĀᘀԀ磏?⨀ఀ Ԁビ?⨀Ȁ᠀Ԁ餂돀梼?⨀恩?⨀恩?⨀/ࠀ裟?⨀섁덀쀁裟?⨀耂Ѐ歸猠桥慰ソソソソ頀壌?⨀壌?⨀᠁烌?⨀烌?⨀᠂裌?⨀裌?⨀᠄ꃌ?⨀ꃌ?⨀裟?⨀耂Іဎ歸猠晲慭攠桥慰ソソソソꀁ⣍?⨀⣍?⨀ 䃍?⨀䃍?⨀ 壍?⨀壍?⨀‐烍?⨀烍?⨀䤀돀샋?⨀ https://doi.org/10.1038/35000501
  2. Alon, U., Barkai, N., Notterman, D. A, Gish, K., Ybarra, S., Mack, D., and Levine, A J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat!. Acad. SCi. USA 96, 6745-6750 https://doi.org/10.1073/pnas.96.12.6745
  3. Aulbert, E. and Schmidt, C. G. (1985). Ferritin--a tumor marker in myeloid leukemia. Cancer Detect. Prevo 8, 297-302
  4. Bies, J., Nazarov, V., and Wolff, L. (1999). Identification of protein instability determinants in the carboxy-terminal region of c-Myb removed as a result of retroviral integration in murine monocytic leukemias. J. Virol. 73, 2038-2044
  5. Bies, J. and Wolff, L. (1997). Oncogenic activation of c-Myb by carboxyl-terminal truncation leads to decreased proteolysis by the ubiquitin-26S proteasome pathway. Oncogene 14, 203-212 https://doi.org/10.1038/sj.onc.1200828
  6. Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., Ares, M., Jr., and Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. SCi, USA. 97, 262-267 https://doi.org/10.1073/pnas.97.1.262
  7. Frater, J. L., Yaseen, N. R, Peterson, L. C., Tallman, M. S., and Goolsby, C. L. (2003). Biphenotypic acute leukemia with coexpression of CD79a and markers of myeloid lineage. Arch. Pathol. Lab Med. 127, 356-359
  8. Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906-914. https://doi.org/10.1093/bioinformatics/16.10.906
  9. Golub, T. R, Sionim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R, Caligiuri, M. A, Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 https://doi.org/10.1126/science.286.5439.531
  10. Hamann, P. R, Hinman, L. M., Hollander, I., Beyer, C. F., Lindh, D., Holcomb, R, Hallett, W., Tsou, H. R, Upeslacis, J., Shochat, D., Mountain, A., Flowers, D. A, and Bernstein, I. (2002). Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13, 47-58.
  11. Hastie, T., Tibshirani, R, Eisen, M. B., A1izadeh, A, Levy, R, Staudt, L, Chan, W. C., Botstein, D., and Brown, P. (2000). 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome BioI. 1, RESEARCH0003
  12. Ho, A. D., Fiehn, W., and HUnsiein, W. (1984). Plasma and intracellular levels of lactate dehydrogenase, phosphohexose isomerase and lysozyme activity in acute leukemia. Blut. 49, 19-28 https://doi.org/10.1007/BF00320380
  13. Juarez, J., Bradstock, K. F., Gottlieb, D. J., and Bendall, L. J. (2003). Effects of inhibitors of the chemokine receptor CXCR4 on acute
  14. lymphoblastic leukemia cells in vitro. Leukemia 17, 1294-1300 https://doi.org/10.1038/sj.leu.2402998
  15. Kroon, E., Krosl, J., Thorsteinsdottir, U., Baban, S., Buchberg, A. M., and Sauvageau, G. (1998). Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. Embo J. 17, 3714-3725 https://doi.org/10.1093/emboj/17.13.3714
  16. Lai, R, Juco, J., Lee, S. F., Nahirniak, S., and Etches, W. S. (2000). Flow cytometric detection of CD79a expression in T-cell acute lymphoblastic leukemias. Am. J. Clin. Pathol. 113, 823-830 https://doi.org/10.1309/391R-93YF-DB4D-1L35
  17. LeBrun, D. P. (2003). E2A basic helix-loop-helix transcription factors in human leukemia. Front. Biosci. 8, s206-222 https://doi.org/10.2741/1030
  18. Liu, J., Zeng, H., and Zhang, Y. (1999). [Study on the expression of interleukin-8 and its receptors in acute leukemia]. Zhonghua Xue Ye Xue Za Zhi 20, 24-26
  19. Parisi, E., Draznin, J., Stoopler, E., Schuster, S. J., Porter, D., and Sollecito, T. P. (2002). Acute myelogenous leukemia: advances and limitations of treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 93, 257-263 https://doi.org/10.1067/moe.2002.121988
  20. Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T., Pergamenschikov, A., Williams, C. F., Zhu, S. X.. Lee. J. C.. Lashkari. D., Shalon. D., Brown. P.O., and Botstein, D. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci, USA 96, 9212-9217 https://doi.org/10.1073/pnas.96.16.9212
  21. Sonoki, T., Harder, L., Horsman, D. E., Karran, L., Taniguchi, I., Willis, T. G., Gesk, S., Steinemann, D., Zucca, E., Schlegelberger, B., Sole, F., Mungall, A. J., Gascoyne, R. D., Siebert, R., and Dyer, M. J, (2001), Cyclin D3 is a target gene of t(6;14)(P21,1;q32.3) of mature B-cell malignancies. Blood 98, 2837-2844 https://doi.org/10.1182/blood.V98.9.2837
  22. Wex, H., Ponelis, E., Wex, T., Dressendorfer, R., Mittler, U., and Vorwerk, P, (2002), Plasma leptin and leptin receptor expression in childhood acute lymphoblastic leukemia. Int. J. Hematol. 76, 446-452 https://doi.org/10.1007/BF02982810
  23. Xiong, M., Li, W., Zhao, J., Jin, L., and Boerwinkle, E. (2001), Feature (gene) selection in gene expression-based tumor classification. Mol, Genet. Metab. 73, 239-247 https://doi.org/10.1006/mgme.2001.3193