Pharmacological Effects of KR60886, A New β3 Adrenoceptor Agonist

  • Lee, Sang-Suk (Korea Research Institute of Chemical Technology Medicinal Science Division) ;
  • Yang, Sung-Don (Korea Research Institute of Chemical Technology Medicinal Science Division) ;
  • Ha, Jae-Du (Korea Research Institute of Chemical Technology Medicinal Science Division) ;
  • Choi, Joong-Kwon (Korea Research Institute of Chemical Technology Medicinal Science Division) ;
  • Cheon, Hyae-Gyeong (Korea Research Institute of Chemical Technology Medicinal Science Division)
  • Published : 2004.12.01

Abstract

In an attempt to develop new anti-diabetic agents, a series of aryloxypropanolamine derivatives was synthesized to serve as ${\beta}_3$ adrenoceptor agonists. Among these derivatives, 1-{1-methyl-3-[4-(2-methyl-2H-1,2,3,4-tetrazol-5-yl)phenyl]propylamino}-3-phenoxy-2-propanol (KR60886) possessed a high affinity for the ${\beta}_3$ adrenoceptor (Ki = 28 nM) and moderate affinities for ${\beta}_1$ and ${\beta}_2$ adrenoceptors (Ki = 95 nM and 100 nM, respectively). In addition, KR60886 stimulated cAMP production with an EC$_{50}$ of 0.4 ${\mu}M$, confirming its agonistic activity for the ${\beta}_3$ adrenoceptor. In vivo activities of KR60886 were examined by using a fat-fed/streptozotocin (STZ)-treated rat model and the ob/ob mouse model. Oral administration of KR60886 (10 mg/kg) for 3 days (b.i.d.) to fat-fed/STZ-treated rats significantly lowered plasma glucose levels and reduced plasma free fatty acid concentrations. Similarly, KR60886 treatment (10 mg/kg/day for 7 d) resulted in a reduction of plasma glucose concentrations in ob/ob mice. The present study suggests that KR60886 is a potent ${\beta}_3$ receptor agonist with in vivo anti-diabetic properties.

Keywords

References

  1. Arch, J. R. S., Ainsworth, A. T., Cawthome, M. A., Piercy, V., Sennitt, M.V., Thody, V.E., Wilson, C., Wilson, S. (1984). Atypical $\beta$-adrenoceptor on brown adipocytes as target for antiobesity drugs. Nature 309, 163-165 https://doi.org/10.1038/309163a0
  2. Arch, J.R.S., Kaumann, A.J. (1993). $\beta$$_3$ and atypical $\beta$-adrenoceptors. Med. Res. Rev. 13,663-729 https://doi.org/10.1002/med.2610130604
  3. Blin, N., Nahmias, C., Drumare, M.P., Strosberg, A.D. (1994). Mediation of most atypical effects by species homologues of the $\beta_{3}$-adrenoceptor. Br. J. Pharmacol. 112, 911-919 https://doi.org/10.1111/j.1476-5381.1994.tb13167.x
  4. Bloom, J.D., Claus, T.H. (1994). CL316,243. Drugs of Future 19, 23-26 https://doi.org/10.1358/dof.1994.019.01.235296
  5. Curran, P., Fishman, P.H. (1996). Endogeneous beta 3 but not beta-I adrenergic receptors are resistant to agonist-mediated regulation in human SK-N-MC neurotumor cells. Cell signal 8, 355-364 https://doi.org/10.1016/0898-6568(96)00068-X
  6. Emorine, L., Blin, N., Strosberg, A.D. (1994). The human $\beta$$_3$ adrenoceptor: the search for a physiological function. TiPS 15 3-7
  7. Emorine, L. J., Marullo, S., Briend-Sutren, M.-M., Patey, G., Tate, K., Delavier-Klutchko, C., Strosberg, A. D. (1989). Molecular characterization of the human $\beta$$_3$ adrenergic receptor. Science 245, 1118-1121 https://doi.org/10.1126/science.2570461
  8. Esbenshade, T.A., Theroux, T.L., Granneman, J.G., Minneman, K.P. (1992). Coexisting beta 1 and atypical beta adrenergic receptors cause reductant increases in cyclic AMP in human neuroblastoma cells. Mol. Pharmacol. 42,753-759
  9. Guan, X.M., Amend, A., Strader, C.D. (1995). Determination of structural domains for G protein coupling and ligand binding in $\beta$$_3$ adrenergic receptor. Mol. Pharmacol. 48, 492-498
  10. Himms-Hagen, J., Danforth, E. Jr. (1996). The potential role of $\beta$$_3$ adrenoceptor agonists in the treatment of obesity and diabetes. Curr. Opin. Endoerin. Diabetes 3, 59-65 https://doi.org/10.1097/00060793-199602000-00010
  11. Lowell, B. B., Flier, J. S. (1997). Brown adipose tissue, $\beta$$_3$ adrenergic receptors and obesity. Annu. Rev. Med. 43, 307-316
  12. Mathvink, R.J., Tolman, J.S., Chitty, D., Candelore, M.R., Cascieri, M.A., Colwell, L.F., Deng, L., Feeney, W.P., Forrest, M.J., Hom, G.J., MacIntyre, D.E., Miller, R.R., Steams, R.A., Tom, L., Wyvratt, M.J., Fisher, M.H., Weber, A.E. (2000). Discovery of a potent, orally bioavailable $\beta$$_3$ adrenoceptor agonist, (R)-N-[4-[2-[[2hydroxy-2-(3-pyridinyl-ethyl)arninoethyl]amino]ethyl]phenyl]-4-[4-[4-(trifluoromethyI)phenyI]thiazol-2-yl]benzenesulfonamide. J. Med. Chern. 43, 3832-3836 https://doi.org/10.1021/jm000286i
  13. Ok, H.O., Reigle, L.B., Candelore, M.R., Cascieri, M.A., Colwell, L.F., Deng, L., Feeney, W.P., Forrest, M.J., Hom, G.J., MacIntyre, D.E., Strader, C.D., Tota, L., Wang, P., Wyvratt, M.J., Fisher, M.H., Weber, A.E. (2000). Substituted oxazole benzenesulfonamides as potent human $\beta$$_3$ adrenergic receptor agonists. Bioorg. Med. Chem. Lett. 10, 1531-1534 https://doi.org/10.1016/S0960-894X(00)00277-8
  14. Reed, M.J., Meszaros, K, Entes, L.J., Claypool, M.D., Pinkett, J.G., Gadbois, T.M., Reaven, G.M. (2000). A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49, 1390-1394 https://doi.org/10.1053/meta.2000.17721
  15. Rosenbaum, M., Malbon, C.C., Hirsch, J., Leibel, R.L. (1993). Lack of $\beta$$_3$ adrenergic effect on lipolysis in human subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 77, 352-355 https://doi.org/10.1210/jc.77.2.352
  16. Strosberg, AD. (1997). Structure and function of the $\beta$$_3$ adrenergic receptor. Annu. Rev. Pharmacol. Toxicol. 37, 421-450 https://doi.org/10.1146/annurev.pharmtox.37.1.421
  17. Weber, A.E. (1998). $\beta$$_3$ adrenergic receptor agonists for the treatment of obesity. Ann. Rep. Med. Chem. 33, 193-202 https://doi.org/10.1016/S0065-7743(08)61084-2
  18. Weyer, C., Gautier, J.F., Danforth, E. (1999). Development of beta3-adrenoceptor agonists for the treatment of obesity and diabetes-An update. Diabetes Metab. 25, 11-21