Influence of FCCP on Catecholamine Release in the Rat Adrenal Medulla

  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Jo, Seong-Ho (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Kee, Young-Woo (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Lim, Ji-Yeon (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Choi, Deok-Ho (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Baek, Young-Joo (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Hong, Soon-Pyo (Department of Internal Medicine (Cardiology), Chosun University)
  • Published : 2004.09.01

Abstract

The aim of the present study was to investigate the effect of FCCP (carbonyl cyanide p-trifluoromethoxyphenyIhydrazone), which is a potent mitochondrial uncoupler, on secretion of catecholamines (CA) from the perfused model of the rat adrenal gland and to establish the mechanism of its action. The perfusion of FCCP (3 ${\times}$ $10^{-5}$ M) into an adrenal vein of for 90 min resulted in great increases in CA secretions. Tachyphylaxis to CA-releasing effect of FCCP was not observed by repeated perfusion of it. The CA-releasing effects of FCCP were depressed by pre-treatment with pirenzepine, chlorisondamine, nicardipine, TMB-8, and the perfusion of EGTA plus $Ca^{2+}$-free medium. In the presence of FCCP (3 ${\times}$ $10^{-5}$ M), the CA secretory responses induced by Ach (5.32 ${\times}$ $10^{-3}$ M), and DMPP ($10^{-4}$ M) were significantly enhanced. Furthermore, the perfusion of CCCP (3 ${\times}$ $10^{-5}$ M), a similar mitochondrial uncoupler, into an adrenal vein for 90 min also caused an increased response in CA secretion. Taken together these experimental results indicate that FCCP causes the CA secretion the perfused rat adrenal medulla in a calcium-dependent fashion. It is suggested that this facilitatory effects of FCCP may be mediated by cholinergic receptor stimulation, which is relevant to both stimulation of the $Ca^{2+}$ influx and $Ca^{2+}$ release from cytoplasmic $Ca^{2+}$ stores.

Keywords

References

  1. Anton, A. H. and Sayre, D. F. (1962). A study of the factors affecting the aluminum oxide trihydroxyindole procedure for the analysis of CAs. J. Pharmacol. Exp. Ther. 138, 360-375
  2. Baker, P. F. and Knight, D. E. (1978). Calcium-dependent exocytosis in bovine adrenal meduallary cells with leaky plasma membrane. Nature 276, 620-622. https://doi.org/10.1038/276620a0
  3. Biscoe, T. J. and Duchen, M. R. (1989). Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide. J. Physiol. 413, 447-468 https://doi.org/10.1113/jphysiol.1989.sp017663
  4. Bodding, M. (2001) Histamine-induced $Ca^2^+$ release in bovine adrenal chromaffin cells. Naunyn Schmiedebergs Arch. Pharmacal. 364, 508-515
  5. Buckler, K. J. and Vaughan-Jones, R. D. (1994a). Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J. Physiol. 478, 157-171 https://doi.org/10.1113/jphysiol.1994.sp020239
  6. Buckler, K. J. and Vaughan-Jones, R. D. (1994b). Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J. Physiol. 476, 423-428 https://doi.org/10.1113/jphysiol.1994.sp020143
  7. Buckler, K. J. and Vaughan-Jones, R. D. (1998). Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J. Physiol. 513, 819-833 https://doi.org/10.1111/j.1469-7793.1998.819ba.x
  8. Chiou, C.Y. and Malagodi, M.H. (1975). Studies on the mechanism of action of a new antagonist (N,N-diethylamino-octy1,3,4,5- trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br. J. Pharmacol. 53,279-285 https://doi.org/10.1111/j.1476-5381.1975.tb07359.x
  9. Cuchillo-Ibanez, I., Olivares, R., Aldea, M., Villarroya, M., Arroyo, G., Fuentealba, J., Garcia, A.G. and Albillos, A. (2002). Acetylcholine and potassium elicit different patterns of exocytosis in chromaffin cells when the intracellular calcium handling is disturbed. Pflugers Arch. 444, 133-142 https://doi.org/10.1007/s00424-002-0810-4
  10. Dixon, W. R., Garcia, A. G., and Kirkekar, S. M. (1975). Release of catecholamines and dopamine-$\beta$-hydroxylase from the rat adrenal gland of the cat. J. Physial. 244, 805-824 https://doi.org/10.1113/jphysiol.1975.sp010827
  11. Doods, H. N., Mathy, M. J., Davidesko, D., Van Charldorp , K. J., De Jonge, A. and Van Xwieten, P. A. (1987). Selectivity of muscarinic agonists in radioligand and in vivo experiments for the putative $M_1$ , $M_2$ and $M_3$ receptors. J. Pharmacol. Exp. Ther. 242, 257-262
  12. Douglas, W.W. (1968). Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34,451-474 https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
  13. Duchen, M. R and Biscoe, T. J. (1992). Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J. Physiol. 450, 33-61 https://doi.org/10.1113/jphysiol.1992.sp019115
  14. Duchen, M. R, Valdeolmillos, M., O'Neill, S. C. and Eisner, D. A. (1990). Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurons. J. Physiol. (Land) 424, 411-426 https://doi.org/10.1113/jphysiol.1990.sp018074
  15. Eglen, R. M. and Whiting, R. L. (1986). Muscarinic receptor subtypes: A critique of the current classification and a proposal for a working nomenclature. J. Auton. Pharmacol. 5,323-346
  16. Fujiwara, N., Higashi, H., Shimoji, K. and Yoshimura, M. (1987). Effects of hypoxia on rat hippocampal neurones in vitro. J. Physiol. (Land) 384, 131-151 https://doi.org/10.1113/jphysiol.1987.sp016447
  17. Gonzalez, C., Almaraz, L., Obeso, A. and Rigual, R.(1994). Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev. 74, 829-898 https://doi.org/10.1152/physrev.1994.74.4.829
  18. Gunter, T. E., Gunter, K. K, Sheu, S. S. and Gavin, C. E. (1994). Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267, C313-C339 https://doi.org/10.1152/ajpcell.1994.267.2.C313
  19. Hammer, R., Verrie, C. P., Birdsall, N. J. M., Brugen, A. S. N. and Hulme, E. C. (1980). Pirenzepine distinguishes between subclasses of muscarinic receptors. Nature 283, 90-92 https://doi.org/10.1038/283090a0
  20. Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci. 31, 2991-2998 https://doi.org/10.1016/0024-3205(82)90066-2
  21. Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. R. and Gilman, A. G. (2001). Goodman & Gilman's Pharmacological Basis of Therapeutics. 9th Ed. McGrraw-Hill, pp.193-195
  22. Heytier, P. G. (1979). Uncouplers of oxidative phosphorylation. Methods Enzymol. 55, 462-72 https://doi.org/10.1016/0076-6879(79)55060-5
  23. Hyllienmark, L. and Brismar, T. (1996). Effect of metabolic inhibition on $K^+$ channels in pyramidal cells of the hippocampal CAl region in rat brain slices. J. Physiol. (Land) 496,155-164 https://doi.org/10.1113/jphysiol.1996.sp021673
  24. Inoue, M., Fujishiro, N. and Imanaga, I. (1999). Na+ pump inhibition and non-selective cation channel activation by cyanide and anoxia in guinea-pig chromaffin cells. J. Physiol. 519, 385-396 https://doi.org/10.1111/j.1469-7793.1999.0385m.x
  25. Juthberg, S. K and Brismar, T. (1997). Effect of metabolic inhibitors on membrane potential and ion conductance of rat astrocytes. Cell Mol. Neurobiol. 17, 367-377 https://doi.org/10.1023/A:1026331226241
  26. Kilpatrick, D. L., Slepetis, R. J., Corcoran. J. J. and Jirshner, N. (1982). Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427-435 https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
  27. Kilpatrick, D. L., Slepetis, R. and Kirshner, N. (1981). Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245-1255 https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
  28. Knight, D. E. and Kesteven, N. T. (1983). Evoked transient intracellular free $Ca^2^+$ changes and secretion in isolated bovine adrenal medullary cells. Proc. R Soc. Land. B 218, 177-199. https://doi.org/10.1098/rspb.1983.0033
  29. Krause, E., Englert, H. and Gogelein, H. (1995). Adenosine triphosphate- dependent K currents activated by metabolic inhibition in rat ventricular myocytes differ from those elicited by the channel opener rilmakalim. Pfliigers Arch. 429, 625-635 https://doi.org/10.1007/BF00373983
  30. Lim, D.Y. and Hwang, D.H. (1991). Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27, 53-67
  31. Misbahuddin, M., Isosaki, M., Houchi, H. and Oka, M. (1985). Muscarinic receptor-mediated increase in cytoplasmic free $Ca^2^+$ in isolated bovine adrenal medullary cells. Effects of TMB-8 and phorbor ester TPA. FEBS Lett.190, 25-28 https://doi.org/10.1016/0014-5793(85)80419-1
  32. Mizobe, F. and Livett, B. G. (1983). Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. J. Neurochem. 3(4), 87-876
  33. Montero, M., Alonso, M. T., Albillos, A., Cuchillo-Ibanez, I., Olivares, R, Garcia, A., Garcia-Sancho, J. and Alvarez, J. (2001). Control of secretion by mitochondria depends on the size of the local $[Ca^2^+]$ after chromaffin cell stimulation. Eur. J. Neurosci. 13, 2247-2254 https://doi.org/10.1046/j.0953-816x.2001.01602.x
  34. Murai, Y., Ishibashi, H., Koyama, S. and Akaike, N. (1997). $Ca^2^+$-activated $K^+$ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78, 2674-2681 https://doi.org/10.1152/jn.1997.78.5.2674
  35. Nakazato, Y., Ohga, A., Oleshansky, M., Tomita, U. and Yamada, Y. (1988). Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br. J. Pharmacol. 93, 101-109 https://doi.org/10.1111/j.1476-5381.1988.tb11410.x
  36. Nowicky, A. V. and Duchen, M. R (1998). Changes in $[Ca^2^+]_i$ and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons. J. Physiol. (Land) 507, 131-145 https://doi.org/10.1111/j.1469-7793.1998.131bu.x
  37. Rocher, A., Obeso, A., Gonzalez, C. and Herreros, B. (1991). Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J. Physiol. 433, 533-548 https://doi.org/10.1113/jphysiol.1991.sp018442
  38. Rounds, S. and McMurtry, I.F. (1981). Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ. Res. 48, 393-400 https://doi.org/10.1161/01.RES.48.3.393
  39. Sasakawa, N., Yamamoto, S., Ishii K. and Kato, R. (1984). Inhibition of calcium uptake and catecholamine release by 8-(N, N-dietylamino)-octyl-3,4,5 -trimethoxy benzoate hydrochloride (TMB-8) in cultured bovine adrenal chromaffin cells. Biochem. Phamacol. 33, 4093-4067
  40. Sato, M. (1997). Effects of the removal of extracellular $Ca^2^+$ on $[Ca^2^+]_i$ responses to FCCP and acetate in carotid body glomus cells of adult rabbits. Brain Res. 768, 37-42 https://doi.org/10.1016/S0006-8993(97)00576-3
  41. Schulz, I. and Stolze, H. H. (1980). The exocrine pancreas: The role of secretagogues cyclic nucleotides and calcium in enzyme secretion. Ann. Rev. Physiol. 42, 127-156 https://doi.org/10.1146/annurev.ph.42.030180.001015
  42. Smith, P. A., Proks, P. and Moorhouse, A. (1999). Direct effects of tolbutamide on mitochondrial function, intracellular Ca2+ and exocytosis in pancreatic beta-cells. Pflugers Arch. 437, 577-588 https://doi.org/10.1007/s004240050820
  43. Suh, S. H., Droogmans, G. and Nilius, B. (2000). Effects of cyanide and deoxyglucose on $Ca^2^+$ signalling in macrovascular endothelial cells. Endothelium 7, 155-168 https://doi.org/10.3109/10623320009165314
  44. Tallarida, R J. and Murray, R. E. (1987). Mannual ofpharmacologic calculations with computer programs. 2nd ed Springer, Verlag, New York, pp. 132
  45. Taylor, S. C. and Peers, C. (1998). Hypoxia evokes catecholamine secretion from rat pheochromocytonla PCI2 cells. Biochem. Biophys. Res Comm. 248, 13-17 https://doi.org/10.1006/bbrc.1998.8905
  46. Taylor, S. C., Roberts, M. L. and Peers, C. (1999a). Acid-evoked quantal catecholamine secretion from rat pheochromocytoma cells and its interaction with hypoxia-evoked secretion. J. Physiol. 519, 765-774 https://doi.org/10.1111/j.1469-7793.1999.0765n.x
  47. Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480 https://doi.org/10.1113/jphysiol.1981.sp013676
  48. Wakade, A. R. and Wakade, T. D. (1983). Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10, 973-978 https://doi.org/10.1016/0306-4522(83)90235-X
  49. Williams, J. A. (1980). Regulation of pancreatic acinal cell function by intracellular calcium. Science 177, 1104-1105 https://doi.org/10.1126/science.177.4054.1104
  50. Yamada, Y., Teraoka, H., Nakazato, Y. and Ohga, A. (1988). Intracellular $Ca^2^+$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular $Ca^2^+$ . Neuroscience Lett. 90, 338-342 https://doi.org/10.1016/0304-3940(88)90212-1
  51. Yokota, K., Yanagihara, N., Izumi, F. and Wada, A. (1988). Effects of protonophores on the synthesis of catecholamines and the intracellular pH in cultured bovine adrenal medullary cells. J. Neurochem. 51, 246-251 https://doi.org/10.1111/j.1471-4159.1988.tb04863.x
  52. Yuan, X. J., Sugiyama, T., Goldman, W. F., Rubin, L. J. and Blaustein, M. P. (1966). A mitochondrial uncoupler increases $K_C_a$ currents but decreases $K_V$ currents in pulmonary artery myocytes. Am. J. Physiol. 270, C321-C331
  53. Zhu, W. H., Conforti, L., Czyzyk-Krzeska, M. F. and Millhom, D. E. (1996). Membrane depolarization in PC12 cells during hypoxia is regulated by an O2-sensitive $K^+$ current. Am. J. Physiol. 271, C658-C665 https://doi.org/10.1152/ajpcell.1996.271.2.C658