References
- Anton, A. H. and Sayre, D. F. (1962). A study of the factors affecting the aluminum oxide trihydroxyindole procedure for the analysis of CAs. J. Pharmacol. Exp. Ther. 138, 360-375
- Baker, P. F. and Knight, D. E. (1978). Calcium-dependent exocytosis in bovine adrenal meduallary cells with leaky plasma membrane. Nature 276, 620-622. https://doi.org/10.1038/276620a0
- Biscoe, T. J. and Duchen, M. R. (1989). Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide. J. Physiol. 413, 447-468 https://doi.org/10.1113/jphysiol.1989.sp017663
-
Bodding, M. (2001) Histamine-induced
$Ca^2^+$ release in bovine adrenal chromaffin cells. Naunyn Schmiedebergs Arch. Pharmacal. 364, 508-515 - Buckler, K. J. and Vaughan-Jones, R. D. (1994a). Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J. Physiol. 478, 157-171 https://doi.org/10.1113/jphysiol.1994.sp020239
- Buckler, K. J. and Vaughan-Jones, R. D. (1994b). Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J. Physiol. 476, 423-428 https://doi.org/10.1113/jphysiol.1994.sp020143
- Buckler, K. J. and Vaughan-Jones, R. D. (1998). Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J. Physiol. 513, 819-833 https://doi.org/10.1111/j.1469-7793.1998.819ba.x
- Chiou, C.Y. and Malagodi, M.H. (1975). Studies on the mechanism of action of a new antagonist (N,N-diethylamino-octy1,3,4,5- trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br. J. Pharmacol. 53,279-285 https://doi.org/10.1111/j.1476-5381.1975.tb07359.x
- Cuchillo-Ibanez, I., Olivares, R., Aldea, M., Villarroya, M., Arroyo, G., Fuentealba, J., Garcia, A.G. and Albillos, A. (2002). Acetylcholine and potassium elicit different patterns of exocytosis in chromaffin cells when the intracellular calcium handling is disturbed. Pflugers Arch. 444, 133-142 https://doi.org/10.1007/s00424-002-0810-4
-
Dixon, W. R., Garcia, A. G., and Kirkekar, S. M. (1975). Release of catecholamines and dopamine-
$\beta$ -hydroxylase from the rat adrenal gland of the cat. J. Physial. 244, 805-824 https://doi.org/10.1113/jphysiol.1975.sp010827 -
Doods, H. N., Mathy, M. J., Davidesko, D., Van Charldorp , K. J., De Jonge, A. and Van Xwieten, P. A. (1987). Selectivity of muscarinic agonists in radioligand and in vivo experiments for the putative
$M_1$ ,$M_2$ and$M_3$ receptors. J. Pharmacol. Exp. Ther. 242, 257-262 - Douglas, W.W. (1968). Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34,451-474 https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
- Duchen, M. R and Biscoe, T. J. (1992). Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J. Physiol. 450, 33-61 https://doi.org/10.1113/jphysiol.1992.sp019115
- Duchen, M. R, Valdeolmillos, M., O'Neill, S. C. and Eisner, D. A. (1990). Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurons. J. Physiol. (Land) 424, 411-426 https://doi.org/10.1113/jphysiol.1990.sp018074
- Eglen, R. M. and Whiting, R. L. (1986). Muscarinic receptor subtypes: A critique of the current classification and a proposal for a working nomenclature. J. Auton. Pharmacol. 5,323-346
- Fujiwara, N., Higashi, H., Shimoji, K. and Yoshimura, M. (1987). Effects of hypoxia on rat hippocampal neurones in vitro. J. Physiol. (Land) 384, 131-151 https://doi.org/10.1113/jphysiol.1987.sp016447
- Gonzalez, C., Almaraz, L., Obeso, A. and Rigual, R.(1994). Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev. 74, 829-898 https://doi.org/10.1152/physrev.1994.74.4.829
- Gunter, T. E., Gunter, K. K, Sheu, S. S. and Gavin, C. E. (1994). Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267, C313-C339 https://doi.org/10.1152/ajpcell.1994.267.2.C313
- Hammer, R., Verrie, C. P., Birdsall, N. J. M., Brugen, A. S. N. and Hulme, E. C. (1980). Pirenzepine distinguishes between subclasses of muscarinic receptors. Nature 283, 90-92 https://doi.org/10.1038/283090a0
-
Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes:
$M_1$ and$M_2$ biochemical and functional characterization. Life Sci. 31, 2991-2998 https://doi.org/10.1016/0024-3205(82)90066-2 - Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. R. and Gilman, A. G. (2001). Goodman & Gilman's Pharmacological Basis of Therapeutics. 9th Ed. McGrraw-Hill, pp.193-195
- Heytier, P. G. (1979). Uncouplers of oxidative phosphorylation. Methods Enzymol. 55, 462-72 https://doi.org/10.1016/0076-6879(79)55060-5
-
Hyllienmark, L. and Brismar, T. (1996). Effect of metabolic inhibition on
$K^+$ channels in pyramidal cells of the hippocampal CAl region in rat brain slices. J. Physiol. (Land) 496,155-164 https://doi.org/10.1113/jphysiol.1996.sp021673 - Inoue, M., Fujishiro, N. and Imanaga, I. (1999). Na+ pump inhibition and non-selective cation channel activation by cyanide and anoxia in guinea-pig chromaffin cells. J. Physiol. 519, 385-396 https://doi.org/10.1111/j.1469-7793.1999.0385m.x
- Juthberg, S. K and Brismar, T. (1997). Effect of metabolic inhibitors on membrane potential and ion conductance of rat astrocytes. Cell Mol. Neurobiol. 17, 367-377 https://doi.org/10.1023/A:1026331226241
- Kilpatrick, D. L., Slepetis, R. J., Corcoran. J. J. and Jirshner, N. (1982). Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427-435 https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
- Kilpatrick, D. L., Slepetis, R. and Kirshner, N. (1981). Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245-1255 https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
-
Knight, D. E. and Kesteven, N. T. (1983). Evoked transient intracellular free
$Ca^2^+$ changes and secretion in isolated bovine adrenal medullary cells. Proc. R Soc. Land. B 218, 177-199. https://doi.org/10.1098/rspb.1983.0033 - Krause, E., Englert, H. and Gogelein, H. (1995). Adenosine triphosphate- dependent K currents activated by metabolic inhibition in rat ventricular myocytes differ from those elicited by the channel opener rilmakalim. Pfliigers Arch. 429, 625-635 https://doi.org/10.1007/BF00373983
- Lim, D.Y. and Hwang, D.H. (1991). Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27, 53-67
-
Misbahuddin, M., Isosaki, M., Houchi, H. and Oka, M. (1985). Muscarinic receptor-mediated increase in cytoplasmic free
$Ca^2^+$ in isolated bovine adrenal medullary cells. Effects of TMB-8 and phorbor ester TPA. FEBS Lett.190, 25-28 https://doi.org/10.1016/0014-5793(85)80419-1 - Mizobe, F. and Livett, B. G. (1983). Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. J. Neurochem. 3(4), 87-876
-
Montero, M., Alonso, M. T., Albillos, A., Cuchillo-Ibanez, I., Olivares, R, Garcia, A., Garcia-Sancho, J. and Alvarez, J. (2001). Control of secretion by mitochondria depends on the size of the local
$[Ca^2^+]$ after chromaffin cell stimulation. Eur. J. Neurosci. 13, 2247-2254 https://doi.org/10.1046/j.0953-816x.2001.01602.x -
Murai, Y., Ishibashi, H., Koyama, S. and Akaike, N. (1997).
$Ca^2^+$ -activated$K^+$ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78, 2674-2681 https://doi.org/10.1152/jn.1997.78.5.2674 - Nakazato, Y., Ohga, A., Oleshansky, M., Tomita, U. and Yamada, Y. (1988). Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br. J. Pharmacol. 93, 101-109 https://doi.org/10.1111/j.1476-5381.1988.tb11410.x
-
Nowicky, A. V. and Duchen, M. R (1998). Changes in
$[Ca^2^+]_i$ and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons. J. Physiol. (Land) 507, 131-145 https://doi.org/10.1111/j.1469-7793.1998.131bu.x - Rocher, A., Obeso, A., Gonzalez, C. and Herreros, B. (1991). Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J. Physiol. 433, 533-548 https://doi.org/10.1113/jphysiol.1991.sp018442
- Rounds, S. and McMurtry, I.F. (1981). Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ. Res. 48, 393-400 https://doi.org/10.1161/01.RES.48.3.393
- Sasakawa, N., Yamamoto, S., Ishii K. and Kato, R. (1984). Inhibition of calcium uptake and catecholamine release by 8-(N, N-dietylamino)-octyl-3,4,5 -trimethoxy benzoate hydrochloride (TMB-8) in cultured bovine adrenal chromaffin cells. Biochem. Phamacol. 33, 4093-4067
-
Sato, M. (1997). Effects of the removal of extracellular
$Ca^2^+$ on$[Ca^2^+]_i$ responses to FCCP and acetate in carotid body glomus cells of adult rabbits. Brain Res. 768, 37-42 https://doi.org/10.1016/S0006-8993(97)00576-3 - Schulz, I. and Stolze, H. H. (1980). The exocrine pancreas: The role of secretagogues cyclic nucleotides and calcium in enzyme secretion. Ann. Rev. Physiol. 42, 127-156 https://doi.org/10.1146/annurev.ph.42.030180.001015
- Smith, P. A., Proks, P. and Moorhouse, A. (1999). Direct effects of tolbutamide on mitochondrial function, intracellular Ca2+ and exocytosis in pancreatic beta-cells. Pflugers Arch. 437, 577-588 https://doi.org/10.1007/s004240050820
-
Suh, S. H., Droogmans, G. and Nilius, B. (2000). Effects of cyanide and deoxyglucose on
$Ca^2^+$ signalling in macrovascular endothelial cells. Endothelium 7, 155-168 https://doi.org/10.3109/10623320009165314 - Tallarida, R J. and Murray, R. E. (1987). Mannual ofpharmacologic calculations with computer programs. 2nd ed Springer, Verlag, New York, pp. 132
- Taylor, S. C. and Peers, C. (1998). Hypoxia evokes catecholamine secretion from rat pheochromocytonla PCI2 cells. Biochem. Biophys. Res Comm. 248, 13-17 https://doi.org/10.1006/bbrc.1998.8905
- Taylor, S. C., Roberts, M. L. and Peers, C. (1999a). Acid-evoked quantal catecholamine secretion from rat pheochromocytoma cells and its interaction with hypoxia-evoked secretion. J. Physiol. 519, 765-774 https://doi.org/10.1111/j.1469-7793.1999.0765n.x
- Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480 https://doi.org/10.1113/jphysiol.1981.sp013676
- Wakade, A. R. and Wakade, T. D. (1983). Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10, 973-978 https://doi.org/10.1016/0306-4522(83)90235-X
- Williams, J. A. (1980). Regulation of pancreatic acinal cell function by intracellular calcium. Science 177, 1104-1105 https://doi.org/10.1126/science.177.4054.1104
-
Yamada, Y., Teraoka, H., Nakazato, Y. and Ohga, A. (1988). Intracellular
$Ca^2^+$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular$Ca^2^+$ . Neuroscience Lett. 90, 338-342 https://doi.org/10.1016/0304-3940(88)90212-1 - Yokota, K., Yanagihara, N., Izumi, F. and Wada, A. (1988). Effects of protonophores on the synthesis of catecholamines and the intracellular pH in cultured bovine adrenal medullary cells. J. Neurochem. 51, 246-251 https://doi.org/10.1111/j.1471-4159.1988.tb04863.x
-
Yuan, X. J., Sugiyama, T., Goldman, W. F., Rubin, L. J. and Blaustein, M. P. (1966). A mitochondrial uncoupler increases
$K_C_a$ currents but decreases$K_V$ currents in pulmonary artery myocytes. Am. J. Physiol. 270, C321-C331 -
Zhu, W. H., Conforti, L., Czyzyk-Krzeska, M. F. and Millhom, D. E. (1996). Membrane depolarization in PC12 cells during hypoxia is regulated by an O2-sensitive
$K^+$ current. Am. J. Physiol. 271, C658-C665 https://doi.org/10.1152/ajpcell.1996.271.2.C658