Ligninolytic Enzyme Activity Produced by Phellinus igniarius 26005

Phellinus sp.에 의한 리그닌 분해효소의 생산

  • 윤재돈 (영남대학교 자연자원대학) ;
  • 하효철 ((주)풀무원 식문화 연구원) ;
  • 이종숙 (영남대학교 자연자원대학) ;
  • 김정애 (영남대학교 약학대학) ;
  • 이재성 (영남대학교 자연자원대학)
  • Published : 2004.09.30

Abstract

The optimum conditions for lignin peroxidase production were studied. Lignin peroxidase was produced almost exclusively in stationary culture with the optimum media composition of malt extract 1 g, yeast extract 0.4 g, glucose 0.4 g and distilled water 100 ml. Tween 80 at 0.005% concentration and veratryl alcohol at 0.4 mM were very effective inducers for lignin peroxidase production.

Phellinus igniarius 26005에 의한 lignin peroxidase의 생산 조건의 최적화를 검토하였다. Lignin peroxidase는 진탕배양보다는 정치배양에서 생산성이 높았으며 최적 생산배지는 malt extract 1 g, yeast extract 0.4 g, glucose 0.4 g, 증류수 100 ml이었다. 효소 생산 유도 물질, Tween 80을 0.005% 수준으로 첨가하였을 때 가장 높은 효소 생산성을 보였으며 veratryl alcohol도 0.4 mM 수준에서 생산성 향상을 나타내었다.

Keywords

References

  1. Kirk, T K. and FaITell, R. L. (1987) Enzymatic 'combustion': The microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465-505 https://doi.org/10.1146/annurev.mi.41.100187.002341
  2. Ha, H. C. (2001) Production of ligninolytic enzymes by the edible basidiomycete Pleurotus ostreatus, Ph.D. Thesis, Kyoto University, Japan
  3. Bumpus, 1. A., Tien, M., Wright, M. and Aust, S. D. (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228, 1434-1436 https://doi.org/10.1126/science.3925550
  4. BaIT, D. P. and Aust, S. D. (1994) Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 28, 78-87 https://doi.org/10.1021/es00051a002
  5. Torres, E., Bustos-Jaimes, I. and Borgne, S. L. (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B: Environmental 46, 1-15 https://doi.org/10.1016/S0926-3373(03)00228-5
  6. Paice, M. G., Raid, I. D., Bourbonais, R., Archibald, F. S. and Jurasek, L. (1993) Manganese peroxidase produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl. Environ. Microbiol. 59, 260-265
  7. de Jong, E., Richard, P. C. and Saddler, J. N. (1997) Effects of a fungal treatment on the brightness and strength properties of a mechanical pulp from douglas-fir. Bioresorce Technol. 61, 6168
  8. Basu, S., Gaur, R., Gomes, J., Sreekrishnan, T R. and Bisaria, V. (2002) Effect of seed culture on solid-state bioconversion of wheat straw by Phanerocheate chrysosporium for animal feed production. J. Biosci. Bioeng. 93, 25-30 https://doi.org/10.1016/S1389-1723(02)80049-4
  9. Tien, M. and Kirk, T K. (1984) Lignin degrading enzyme from Phanerocheate chrysosporium: purification, characterization and catalytic properties of a unique $H_2O_2-requiring$ oxygenase. Proc. Natl. Acid. Sci. USA 81, 2280-2284 https://doi.org/10.1073/pnas.81.8.2280
  10. Gold, H. and Alic, M. (1993) Molecular biology of the lignindegrading basidiomycete. Microbial. Rev. 57, 605-622
  11. Purification and characterization of a novel lignin peroxidase from white-rot fungus Phanerocheate sordida YK-624. FEMS Microb. Lett. 224, 285-290 https://doi.org/10.1016/S0378-1097(03)00447-6
  12. Gold, M. H. and Glenn, J. K. (1988) Manganese peroxidase from Phanerocheate chrysosporium. Methods Enzymol. 161, 258-264 https://doi.org/10.1016/0076-6879(88)61027-5
  13. Ha, H. C. and Lee, 1. S. (2002) Production of ligninolytic enzymes from Pleurotus ostreatus grown on wood meal-wheat bran culture. J. Korean Soc. Agric. Chem. Biotechnol. 45, 124-127
  14. Thurston, C. F. (1994) The sturcture and function of fungal laccases. Microbiology 140, 19-26 https://doi.org/10.1099/13500872-140-1-19
  15. Barreca, A. M., Fabbrini, M., Galli, C., Gentili, P. and Ljunggren, S. (2003) Laccase mediated oxidation of a lignin model for improved delignification procedures. J. Mol. Catal. B: Enzymatic 26, 105-110 https://doi.org/10.1016/j.molcatb.2003.08.001
  16. Tien, M. and Kirk, T K. (1983) Lignin-degrading enzyme from the hymenomycete Phanerocheate chrysasporium. Science 221, 660-661
  17. Kofujita, H., Asad, Y. and Kuwahara, M. (1991) Alkyl-aryl cleavage of phenolic ~$\ss-o-4$ lignin substructure model compound by Mn(II)-peroxidase isolated from Pleurotus ostreatus. Mokuzai Gakkaishi 37, 555-561
  18. Hatakka, A. (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125-135 https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  19. Kaal, E. E. 1., Field, J. A. and Thomas, W. J. (1995) Increasing ligninolytic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. Bioresource Technol. 53, 133-139 https://doi.org/10.1016/0960-8524(95)00066-N
  20. Glenn J. K. and Gold M. H. (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerocheate chrysosporium. Appl. Environ. Microbiol. 45, 1741-1747
  21. Gold, M. H. and Alic, M. (1993) Molecular biology of the lignin-degrading basidiomycete Phanerocheate chrysosporium. Microbiol. Rev. 57, 605-622
  22. Tien, M. and Kirk, T K. (1988) Lignin peroxidase of Phanerocheate chrysosporium. Methods Enzymol. 161, 238-249 https://doi.org/10.1016/0076-6879(88)61025-1
  23. Ruggeri, B. and Sassi, G. (2003) Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by P. chrysosporium. Process Biochem. 38, 1669-1676 https://doi.org/10.1016/S0032-9592(02)00199-1
  24. Rothschild, N., Novotny, c., Sasek, V. and Dosoretz, C. (2002) Ligninolytic enzymes of the fungus lrpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase. Enzyme Microb. Tech. 31, 627-633 https://doi.org/10.1016/S0141-0229(02)00171-0
  25. Leisola, MSA, Thanei-Wyss, U. and Fiechter, A. (1985) Strategies for production of high Iigninase activities by Phanerocheate chrysosporium. J. Biotechnol. 3, 97-107 https://doi.org/10.1016/0168-1656(85)90010-0
  26. Leisola, MSA and Fiechter, A. (1985) Ligninase production in agitated conditions by Phanerocheate chrysosporium. FEMS Microbiol. Lett. 29, 33-36 https://doi.org/10.1111/j.1574-6968.1985.tb00830.x
  27. Moreira, M. T, Sanroman, A., Feijoo, G. and Lema, J. M. (1996) Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow. Application to Aspergillus niger and Phanerocheate chlysosporium. Enzyme Microb. Tech. 19, 261-266 https://doi.org/10.1016/0141-0229(95)00244-8
  28. Ryu, W. R. and Cho, M. H. (2002) Production of lignindegrading enzymes by white rot fungi immobilized in a rotating bioreactor. Korean J. Biotechnol. Bioeng. 17, 14-19
  29. Dosoretz, C. G., Chen, AH-C. and Grethlein, H. E. (1990) Effect of oxygenation conditions on submerged cultures of Phanerocheate chrysosporium. Appl. Microbial. Biotechnol. 34, 131-137
  30. Lundquist, K. and Kirk, T K. (1978) De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete. Phytochemistry 17, 1676 https://doi.org/10.1016/S0031-9422(00)94674-0
  31. Fenn, P. and Kirk, T K. (1981) Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerocheate chrysosporium. Arch. Microbiol. 130, 59-65 https://doi.org/10.1007/BF00527073
  32. Faison, B. D. and Kirk, T K. (1985) Factors involved in the regulation of ligninase activity in Phanerocheate chrysosporium. Appl. Erwiron. Microbiol. 49, 299-304
  33. Dodson, P. J., Evans, C. S., Harvey, P. J. and Palmer, J. M. (1987) Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyses Ca-C13, cleavage in a lignin model compound. FEMS Microbiol. Lett. 42, 17-22
  34. Gianfreda, L., XU, F. and Bollag, J. (1999) Laccase: A useful group of oxidoreductive enzymes. Bioremed. J. 3, 1-25 https://doi.org/10.1080/10889869991219163
  35. Venkatadri, R. and Irvine, R. L. (1990) Effect of agitation on ligninase activity and ligninase production by Phanerocheate chrysosporium. Appl. Erwiron. Microbiol. 56, 2684-2691
  36. Kirk, T. K., Croan, S., Tien, M., Murtagh, K. E. and Farrell, R. C. (1986) Production of multiple ligninases by Phanerocheate chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb. Tech. 8, 27-31 https://doi.org/10.1016/0141-0229(86)90006-2
  37. Huang, X., Wang, D., Liu, c., Hu, M., Qu, Y. and Gao, P. (2003) The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase. Biochem. Biophys. Res. Commun. 311, 491-494