Antioxidative Effects of Polyozellin and Thelephoric Acid Isolated from Polyozellus multiflex

까치버섯(Polyozellus multiplex)으로부터 분리한 polyozellin과 thelephoric acid의 항산화 활성

  • Chung, Shin-Kyo (Department of Food Science & Technology, Kyungpook National University) ;
  • Jeon, So-Young (Division of Applied Biology & Chemistry, Kyungpook National University) ;
  • Lee, Hee-Ju (Division of Applied Biology & Chemistry, Kyungpook National University) ;
  • Kim, Suk-Kyung (Department of Food Science & Technology, Kyungpook National University) ;
  • Kim, Sang-In (Division of Applied Biology & Chemistry, Kyungpook National University) ;
  • Kim, Geum-Soog (Industrial Crop Division, National Crop Experiment, RDA) ;
  • Kwon, Soon-Ho (Division of Applied Biology & Chemistry, Kyungpook National University) ;
  • Kim, Ja-Young (Division of Applied Biology & Chemistry, Kyungpook National University) ;
  • Song, Kyung-Sik (Division of Applied Biology & Chemistry, Kyungpook National University)
  • 정신교 (경북대학교 식품공학과) ;
  • 전소영 (경북대학교 농업생명과학대학 응용생물화학부) ;
  • 이희주 (경북대학교 농업생명과학대학 응용생물화학부) ;
  • 김숙경 (경북대학교 식품공학과) ;
  • 김상인 (경북대학교 농업생명과학대학 응용생물화학부) ;
  • 김금숙 (작물시험장 특용작물과) ;
  • 권순호 (경북대학교 농업생명과학대학 응용생물화학부) ;
  • 김자영 (경북대학교 농업생명과학대학 응용생물화학부) ;
  • 송경식 (경북대학교 농업생명과학대학 응용생물화학부)
  • Published : 2004.06.30

Abstract

In the course of screening for reactive oxygen species scavengers from natural products, two antioxidants were isolated from the edible mushroom Polyozellus multiflex and identified as polyozellin and thelephoric acid. Thelephoric acid inhibited 45.7% of the super oxide anion radical, 74.6% of the hydroxyl radical, and 44.0% of the DPPH radical at 0.1 mM, while the positive control ${\alpha}-tocopherol$ did 22.1%, 75.6%, and 26.5% of each radical, respectively. Polyozellin, the reductive acetylated form of thelephoric acid, showed almost same scavenging activity against above mentioned radicals. The isolated compounds showed scavenging activity on the superoxide anion radical in the ESR method ($IC_{50}$ of polyozellin and thelephoric acid were $218.0\;{\mu}M$ and $21.1\;{\mu}M$, respenctively). However, they showed no significant activity on the hydrogen peroxide radical.

Keywords

References

  1. Packer, L. (1994) In Methods in Enzymology: Oxygen Radicals in Biological Systems. Vol. 233, Part C, Academic Press, San Diego
  2. Wettasinghe, M. and Shahidi, F. (2000) Scavenging of reactiveoxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chem. 70, 17-26 https://doi.org/10.1016/S0308-8146(99)00269-1
  3. Sawyer, D. T. and Valentine, J. S. (1981) How super is superoxide? ACC. Chem. Res. 14, 393 https://doi.org/10.1021/ar00072a005
  4. Fridorich, I. (1986) Biological effects of the superoxide radical Arch. Biochem. Biophys. 247, 1-11 https://doi.org/10.1016/0003-9861(86)90526-6
  5. Davies, K. J. A. (1995) In Environment, Drugs and Food Additives, Portland Press, Portland, pp. 1-3
  6. Ames, B. N. (1983) Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative diseases. Science 221, 1256-1264 https://doi.org/10.1126/science.6351251
  7. Wuertzen, G. and Olsen, P. (1986) Chronic study on BHT in rats. Food Chem. Toxicol. 24, 1121-1125 https://doi.org/10.1016/0278-6915(86)90297-8
  8. Hwang, J. S., Song, K. S., Kim, Y. S., Seok, S. J., Lee, T. H. and Yoo, I. D. (1996) Lipid peroxidation inhibitors from Polyozellus multiflex. Kor. J. Appl. Microbiol. Biotechnol. 24, 591-596
  9. Muller, H. E. (1985) Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentralbl Bakteriol. Mikrobio. Hyg. 259, 151-158
  10. Chung, S. K., Osawa, T. and Kawakishi, S. (1997) Hydroxyl radical-scavenging effect of spices and scavengers from brown mustard (Brassica nigra). Biosci. Biotech. Biochem. 61, 118-124 https://doi.org/10.1271/bbb.61.118
  11. Blois, M. S. (1985) Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1201 https://doi.org/10.1038/1811199a0
  12. lio, M., Moriyama, A., Matsumoto, Y., Takai, N. and Fukumoto, M. (1985) Inhibition of xanthine oxidase by flavonoids. Agric. BioI. Chem. 49, 2173-2182 https://doi.org/10.1271/bbb1961.49.2173
  13. Luo, G. M., Qi, D. H., Zheng, Y. G., Mu, Y., Yan, G. L., Yang, T. Y. and Shen, J. C. (2001) ESR studies on reaction of saccharide with the free radicals generated from the xanthine oxidase/hypoxanthine system containing iron. FEBS Lett. 492, 29-32 https://doi.org/10.1016/S0014-5793(01)02226-8
  14. Gripenberg, J. (1960) Fungus pigments-XII. The structure and synthesis of thelephoric acid. Tetrahedron 10, 135-143 https://doi.org/10.1016/S0040-4020(01)97798-1
  15. Kwak, J. Y., Rhee, I. K, Lee, K. B., Hwang, J. S., Yoo, I. D. and Song, K. S. (1999) Thelephoric acid and kynapcin-9 in mushroom Polyozellus multiflex inhibit prolyl endopeptidase in vitro. J. Microbiol. Biotechnol. 9, 798-805
  16. Hwang, J. S., Song, K. S., Kim, W. G., Lee, T. H., Koshino, H. and Yoo, I. D. (1997) Polyozellin, a new inhibitor of prolyl endopeptidase from Polyozellus multiflex. J. Antibiot. 50, 773-777 https://doi.org/10.7164/antibiotics.50.773
  17. Lee, I.-S. and Nishikawa, A. (2003) Polyozellus multiflex, a Korean wild mushroom, as a potent chemopreventive agent against stomach cancer. Life Sci. 73, 3225-3234 https://doi.org/10.1016/j.lfs.2003.06.006
  18. Han, J. and Lee, I. S. (2000) Antioxidation and anticancer effects of Polyozellus multiflex. Kor. J. Mycol. 28, 55-59