Isolation of Protoplasts from Tomato Root by Two-step Osmotic Treatment

토마토 뿌리조직으로부터 두 단계 삼투압 처리에 의한 원형질체의 분리

  • Shin, Dae-Seop (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Han, Min-Woo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Agricultural Chemistry, Chungbuk National University)
  • 신대섭 (충북대학교 농과대학 농화학과) ;
  • 한민우 (충북대학교 농과대학 농화학과) ;
  • 김영기 (충북대학교 농과대학 농화학과)
  • Published : 2004.06.30

Abstract

In order to measure cellular physiological activity including ion channel activity, protoplasts were isolated from the root tissue of tomato plant. The general methods recommended were not efficient enough to make protoplasts from the root tissue. Among various conditions tested, we found that a two-step treatment of osmosis is very efficient for the isolation of protoplasts. In this procedure, root tissues were preincubated in a solution containing 300 mM sorbitol for 30 min. Then, they moved to the reaction solution containing 700 mM sorbitol as well as cell wall-digesting enzymes. The formation of protoplast was greatly increased by this method. In order to find the optimal condition of the two-step method, various conditions of pH, osmotic pressure, incubation time, and the concentrations of cell wall-digesting enzymes were tested. The yield of protoplast isolation was maximal at pH 5.0 after 2 hr incubation. Mixed enzymes of 3% cellulase, 1 % macerozyme, and 0.1 % pectolyase showed maximal protoplast isolation. The physiological activity of isolated protoplast evaluated by measuring the cellular ATPase activity was as high as that measured from the preparation of root tissue. The protoplasts isolated by this method were remained healthy up to 4 hrs which is enough time to measure the cellular physiological activity. These results show that the two-step treatment of osmotic pressure was successful to obtain high yield of healthy protoplast from tomato root tissue.

이온채널의 활성을 포함한 세포의 생리활성을 측정하기 위하여 토마토의 뿌리조직으로부터 원형질체를 분리하였다. 일반적으로 널리 사용되는 원형질체 분리법은 뿌리조직의 경우 효율이 좋지 않았다. 따라서, 다양한 조건을 변화시키며 분리효율을 조사하던 중 두 단계의 삼투압 처리로 원형질체 분리효율이 높아짐을 확인하였다. 첫 단계로 뿌리조직을 300 mM sorbitol을 포함하는 용액에서 30분간 배양한 후, 700 mM sorbitol과 세포벽 분해효소를 포함하는 용액으로 옮겼을 때, 원형질체 형성은 급격히 증가하였다. 이러한 분리방법의 최적 조건을 결정하기 위하여 pH와 삼투압, 배양시간, 세포벽 분해효소의 농도 등을 조사하였다. 원형질체 분리의 수율은 3% cellulase와 1% macerozyme, 0.1% pectolyase를 포함하는 pH 5.0의 혼합효소액에서 2시간 배양할 때 최대로 나타났다. ATPase 활성으로 평가한 원형질체의 세포활성은 뿌리조직의 시료에서 측정한 간과 유사하였다. 또한, 분리한 원형질체의 세포활성은 4시간 동안 감소하지 않아 생리활성 측정을 위한 시료로 적합하였다. 본 결과는 두 단계 삼투압 처리법이 토마토 뿌리조직으로부터 높은 수율의 원형질체 분리에 성공적임을 보인다.

Keywords

References

  1. Cocking, E. C. (1960) A method for the isolation of plant protoplasts and vaculoes. Nature 187, 962-963 https://doi.org/10.1038/187962a0
  2. Zapata, F. J., Evans, P K., Power, J. B. and Cocking, E. C. (1977) The effect of temperature on the division of leaf protoplasts of Lycopersicon esculentum and Lycopersicon peruvianum. Plant Sci. Lett. 8, 119-124 https://doi.org/10.1016/0304-4211(77)90021-9
  3. Imanish, S. and Hiura, I. (1983) Culture and regeneration of Lycopersicon peruvianum leaf protoplasts.Jpn. J. Breed 33(4), 359-368
  4. Shahin, E. A. (1985) Totipotency of tomato protoplasts. Them: Appl. Genet. 69, 235-240
  5. Chung, J. D., Lee, M. H. and Chun, C. K. (1986) Isolation and culture of protoplast of ornamental tomato (Lycopersicon esculentum X 1. pimpinelijolium cv. Thny Tim). J. Kor. Soc. Hort. Sci. 27(3), 289-303
  6. Shin, M. C. and Kim, S. G. (1989) Mesophyll protoplast culture of Lycopersicon esculentum Mill and L. pimpinellijolium. Kor. J. Genetics 11(3), 147-154
  7. Sebastiani, L., Lindberg, S. and Vitagliano, C. (1999) Cytoplasmic free Ca^2^+ dynamics in single tomato (Lycopersicon esculentum) protoplasts subjected to chilling temperatures. Physiologia Plantarum 105, 239-245 https://doi.org/10.1034/j.1399-3054.1999.105208.x
  8. Hirsch, R E., Lewis, B. D., Spalding, E. P and Sussman, M. R . (1998) A role for the AKTl potassium channel in plant nutrition. Science 280, 918-921 https://doi.org/10.1126/science.280.5365.918
  9. Cho, K. H., Sakong, J. and Kim, Y .K. (1998) Characterization of microsomal ATPases prepared from tomato roots. Agric. Chern. Biotechnol. 41, 130-136
  10. Demidchik, V. and Tester, M. (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. 128, 379-387 https://doi.org/10.1104/pp.010524
  11. Kollmeier, M., Dietrich, P, Bauer, C. S., Horst, W. J. and Hedrich, R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol. 126, 397-410 https://doi.org/10.1104/pp.126.1.397
  12. Niggli, V., Penniston, J. T. and Carafoli, E. (1979) Purification of the (Ca^2^+ Mg^2^+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J. Biol. Chem. 254, 9955-9958
  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  14. Ramahaleo, T., Morillon, R, Alexandre, J. and Lassalles, J. (1999) Osmotic water permeability of isolated protoplasts. Modifications during development. Plant Physiol. 119, 885-896 https://doi.org/10.1104/pp.119.3.885
  15. Hayward, C. and Power, J. B. (1975) Plant production from leaf protoplasts of Petunia parodii. Plant Sci. Lett. 4, 407-410 https://doi.org/10.1016/0304-4211(75)90270-9
  16. Schwenk, F. w., Pearson, C. A. and Roth, M. R. (1981) Soybean mesophyll protoplasts. Plant Sci. Lett. 23, 153-155 https://doi.org/10.1016/0304-4211(81)90005-5
  17. Wilson, H. H., Styer, D. J., Conrad, P .L., Durbin, R .O. and Helgeson, J. P. (1980) Isolation of sterile protoplasts from unsterilized leaves. Plant Sci. Lett. 18, 151-154 https://doi.org/10.1016/0304-4211(80)90044-9
  18. Balestri, E. and Cinelli, F. (2001) Isolation and cell wall regeneration of protoplasts from Posidonia oceanica and Cymodocea nodosa. Aquatic Botany 70, 237-242 https://doi.org/10.1016/S0304-3770(01)00157-7
  19. Sheen, J. (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 1466-1475 https://doi.org/10.1104/pp.010820