References
- Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223-229 https://doi.org/10.1126/science.181.4096.223
- Levinthal, C. (1968) Are there pathways for protein folding? J. Chim. Phys. 85, 44-45
- Zwanzig, R., Szabo, A. and Bagchi, B. (1992) Lenvinthal's paradox. Proc. Nall. Acad. Sci. USA 89, 20-22 https://doi.org/10.1073/pnas.89.1.20
- Elove, G. A., Chaffotte, A. R, Roder, H. and Goldberg, M. E. (1992) Early steps in cytbchrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry 31, 6876-6883 https://doi.org/10.1021/bi00145a003
- Khorasanizadeh, S., Peters, I. D. and Roder, H. (1996) Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat. Struct. Biol. 3, 193-205 https://doi.org/10.1038/nsb0296-193
-
Sauder, J. M., MacKenzie, N. E. and Roder, H. (1996) Kinetic mechanism of folding and unfolding of Rhodobacter capsulatus cytochrome
$C_2$ . Biochemistry 35, 16852-16862 https://doi.org/10.1021/bi961976k - Park, S.-H., O'Neil, K. T. and Roder, H. (1997) An early intermediate in the folding reaction of the Bl domain of protein G contains a native-like core. Biochemistry 36, 14277-14283 https://doi.org/10.1021/bi971914+
- Raschke, T. M. and Marqusee, S. (1997) The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat. Struct. Biol. 4, 298-304 https://doi.org/10.1038/nsb0497-298
- Kern, G., Handel, T. and Marqusee, S. (1998) Characterization of a folding intermediate from HIV-l ribonuclease H. Protein Sci. 7, 2164-2174 https://doi.org/10.1002/pro.5560071014
- Kuwata, K.. Shastry, R., Cheng, H., Hoshino, M., Batt, C. A., Goto, Y. and Roder, H. (2001) Structural and kinetic characterization of early folding events in beta-lactoglobulin. Nat. Struct. Biol. 8, 151-155 https://doi.org/10.1038/84145
- Capa1di, A. R, Shastry, M. C., Kleanthous, C., Roder, H. and Radford, S. E. (2001) Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate. Nat. Struct. Biol 8, 68-72 https://doi.org/10.1038/83074
- Baldwin, R. L. (1996) On-pathway versus off-pathway folding intermediates, folding Des. 1, R1-R8 https://doi.org/10.1016/S1359-0278(96)00003-X
- Khorasanizadeh, S., Peters, I. D., Butt, T. R. and Roder, H. (1993) Stability and folding of a tryptophan-containing mutant of ubiquitin. Biochemistry 32, 7054-7063 https://doi.org/10.1021/bi00078a034
- Peterman, B. F. (1979) Measurement of the dead time of a fluorescence stopped-flow instrument. Anal. Biochem. 93, 442-444 https://doi.org/10.1016/S0003-2697(79)80176-1
- Briggs, M. S. and Roder, H. (1992) Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc. Natl. Acad. Sci. USA 89, 2017-2021 https://doi.org/10.1073/pnas.89.6.2017
- Tanford, C. (1970) Protein denaturation. Part C. Theoretical models for the mechanism of denaturation. Adv. Protein Chem. 24, 1-95 https://doi.org/10.1016/S0065-3233(08)60241-7
- Berberan-Santos, M. N. and Mardnho, J. M. G. (1990) The integration of kinetic rate equations by matrix methods. J. Chem. Edu. 67, 375-379 https://doi.org/10.1021/ed067p375
- Pogliani, L. and Terenzi, M. (1992) Matrix formulation of chemical reacdon rates. J. Chem. Edu. 69, 278-280 https://doi.org/10.1021/ed069p278
- Pace, C. N. (1975) The stability of globular proteins. CRC Crit. Rev. Biochem. 2, 1-43
- Myers, J. K., Pace, C. N. and Scholtz, J. M. (1995) Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138-2148 https://doi.org/10.1002/pro.5560041020
- Schindler, T. and Schmid, F. X. (1996) Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry 35, 16833-16842 https://doi.org/10.1021/bi962090j
- Becktel, W. J. and Schellman, J. A. (1987) Protein stability curves. Biopolymers 26, 1859-1877 https://doi.org/10.1002/bip.360261104
- Schellman, J. A. (1987) The thermodynamic stability of proteins. Ann. Rev. Biophys. Biophys. Chem. 16, 115-137 https://doi.org/10.1146/annurev.bb.16.060187.000555
- Privalov, P. L. and Khechinashvili, N. N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a caloiimetric study. J. Mol. Biol. 86, 665-684 https://doi.org/10.1016/0022-2836(74)90188-0
- Wintrode, P. L., Makhatadze, G. I. and Pnvalov, P. L. (1994) Thermodynamics of ubiquitin unfolding, Proteins Struct. Funct. Genet. 18, 246-253
- Chen, B., Baase, W. A. and Schellman, J. A. (1989) Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry 28, 691-699 https://doi.org/10.1021/bi00428a042
- Jackson, S. E. and Fersht, A. R. (1991) Folding of chymotrypsin inhibitor 2. 2. Influence of proline isomenzation on the folding kinetics and thermodynamic characterization of the transition state of folding. Biochemistry 30, 10436-10443 https://doi.org/10.1021/bi00107a011
- Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83-229 https://doi.org/10.1016/S0065-3233(08)60546-X