References
- Immer, H.; Bagli, J. F. J. Org. Chem. 1968, 33, 2457. https://doi.org/10.1021/jo01270a062
- Goerlitzer, K. Arch. Pharm. 1975, 308, 272. https://doi.org/10.1002/ardp.19753080406
- House, H. O.; McDaniel, W. C. J. Org. Chem. 1977, 42, 2155. https://doi.org/10.1021/jo00432a030
- Goerlitzer, K.; Engler, E. Arch. Pharm. 1980, 313, 429. https://doi.org/10.1002/ardp.19803130506
- Singh, R.; Tripathi, R.C.; Kumar, A.; Anaud, N. Indian J. Chem. 1989, 28B, 486.
- Trost, B. M.; Fleming, I. In Comprehensive Organic Synthesis;Semmelhack, M. F., Ed.; Pergamon Press: Oxford, 1991; Vol. 4, p 230.
- House, H. O.; Hudson, C. B. J. Org. Chem. 1970, 35, 647. https://doi.org/10.1021/jo00828a022
- Baddar, F. G.; El-Neweihy, M. F.
- Loutfy, R. D. J. Chem. Soc. 1970, 620.
- Kasturi, T. R.; Abraham, E. M.; Prasad, R. S. Tetrahedron Lett. 1974, 15, 971. https://doi.org/10.1016/S0040-4039(01)82381-9
- Kasturi, T. R.; Parvathi, S. Indian J. Chem. 1977, 15B, 857.
- Sartori, G.; Bigi, F.; Tao, X.; Casnati, G.; Canali, G. TetrahedronLett. 1992, 33, 4771. https://doi.org/10.1016/S0040-4039(00)61282-0
- Sartori, G.; Maggi, R.; Bigi, F.; Porta, C.; Tao, X.; Bernardi, G. L.;Ianelli, S.; Nardelli, M. Tetrahedron 1995, 51, 12179. https://doi.org/10.1016/0040-4020(95)00772-Z
- Negishi, E. I.; Liu, F. In Metal-catalyzed Cross-couplingReactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim,1998; p 1.
- Negishi, E. I.; Coperet, C.; Ma, S. M.; Liou, S. Y.;Liu, F. Chem. Rev. 1996, 96, 365. https://doi.org/10.1021/cr950020x
- Daves, G. D.; Hallberg, A.Chem. Rev. 1989, 89, 1433. https://doi.org/10.1021/cr00097a002
- Gee, M. B.; Lee, W. J.; Yun, E. K. Bull. Korean Chem. Soc. 2003, 24, 1193. https://doi.org/10.5012/bkcs.2003.24.8.1193
- Brase, S.; de Meijere, A. In Metal-catalyzed Cross-couplingReactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim,1998; p 99.
- Cabri, W.; Cadiani, I. Acc. Chem. Res. 1995, 28, 2. https://doi.org/10.1021/ar00049a001
- de Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed. Engl. 1994,106, 2473. https://doi.org/10.1002/ange.19941062307
- Heck, R. F. In Comprehensive Organic Synthesis,Vol. 4; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford,1991; p 833.
- Heck, R. F. In Palladium Reagents in Organic Synthesis; Academic Press: London, 1985.
- Santos, L. S.; Pilli, R. A. Synthesis 2002, 87.
- Clique, B.; Fabritius, C.-H.; Coutuier, C.; Monteiro, N.; Balme, G. Chem. Commun. 2003, 272.
- Gaudin, J.-M. Tetrahedron Lett. 1991, 32, 6113 https://doi.org/10.1016/0040-4039(91)80766-Y
- Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653. https://doi.org/10.1016/S0040-4020(01)86168-8
- Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. https://doi.org/10.1016/0040-4020(96)00154-8
- Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York,1997; Vol. 51, pp 201-350.
- Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049. https://doi.org/10.1002/1521-3773(20000901)39:17<3049::AID-ANIE3049>3.0.CO;2-5
- Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. https://doi.org/10.2174/1385272023374094
- Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. https://doi.org/10.1021/cr010043d
- Song, Y. S.; Lee, C. H.; Lee, K.-J. J. Heterocyclic Chem. 2003,40, 939. https://doi.org/10.1002/jhet.5570400532
- Lee, C. H.; Song, Y. S.; Cho, H. I.; Yang, J. W.; Lee,K.-J. J. Heterocyclic Chem. 2003, 40, 1103. https://doi.org/10.1002/jhet.5570400622
- Park, J. B.; Ko, S. H.; Kim, B. G.; Hong, W. P.; Lee, K.-J. Bull.Korean Chem. Soc. 2004, 25, 27. https://doi.org/10.5012/bkcs.2004.25.1.027
- Basavaiah, D.; Muthukumarn, K. Tetrahedron 1998, 54, 4943. https://doi.org/10.1016/S0040-4020(98)00200-2
- Sundar, N.; Bhat, S. V. Synth. Commun. 1998, 28, 2311. https://doi.org/10.1080/00397919808007049
- Kumareswaran, R.; Vankar, Y. D. Synth. Commun. 1998, 28, 2291. https://doi.org/10.1080/00397919808007047
- Li, G.; Wei, H.-X.; Gao, J. J.; Caputo, T. D. Tetrahedron Lett.2000, 41, 1. https://doi.org/10.1016/S0040-4039(99)01992-9
- Van Emelen, K.; De Wit, T.; Hoornaert, G. J.; Compernolle, F.Tetrahedron 2002, 58, 4225. https://doi.org/10.1016/S0040-4020(02)00350-2
- Porter, H. D.; Suter, C. M. J. Am. Chem. Soc. 1935, 57, 2022. https://doi.org/10.1021/ja01314a002
- Nakajima, M.; Yamamoto, S.; Yamaguchi, Y.; Nakamura, S.;Hashimoto, S. Tetrahedron 2003, 59, 7307. https://doi.org/10.1016/S0040-4020(03)01139-6
- Gorlitzer, K. Arch. Pharm. 1975, 308, 394. https://doi.org/10.1002/ardp.19753080514
- Kumar, B.; Kaur, N. J. Org. Chem. 1983, 48, 2281. https://doi.org/10.1021/jo00161a030
- J. Org. Chem. v.48 Kumar, B.;Kaur, N. https://doi.org/10.1021/jo00161a030
Cited by
- Using Morita-Baylis-Hillman acetates of 2-azidobenzaldehydes for the synthesis of 2-alkoxy-3-cyanomethylquinolines and alkyl quinoline-3-carboxylates vol.48, pp.4, 2011, https://doi.org/10.1002/jhet.667
- Synthesis of 1-Indanones from Benzoic Acids vol.51, pp.3, 2012, https://doi.org/10.1021/ie202369w
- Palladium-Catalyzed Arylic/Allylic Aminations: Permutable Domino Sequences for the Synthesis of Dihydroquinolines from Morita–Baylis–Hillman Adducts vol.15, pp.12, 2013, https://doi.org/10.1021/ol401234v
- Rauhut–Currier-Type Reaction with Morita–Baylis–Hillman Carbonates of 2-Cyclohexenone and Alkylidenemalononitriles To Access Chromene Derivatives vol.15, pp.21, 2013, https://doi.org/10.1021/ol402694b
- Diastereoselective Total Synthesis of Salvileucalin C vol.16, pp.12, 2014, https://doi.org/10.1021/ol501423t
- 1,3-Diketones. Synthesis and properties vol.51, pp.6, 2015, https://doi.org/10.1134/S1070428015060019
- Recent advances in terpenoid syntheses from China vol.59, pp.9, 2016, https://doi.org/10.1007/s11426-016-0076-6
- Synthesis of Indanones via Intramolecular Heck Reaction of Baylis—Hillman Adducts of 2-Iodobenzaldehyde. vol.35, pp.45, 2004, https://doi.org/10.1002/chin.200445036
- Synthesis of Methyl (E)-2-Cyanomethylcinnamates Derived from Baylis-Hillman Acetates and Conversion into Several 4-Hydroxy-2-naphthoic Acids and Benzylidenesuccinimides vol.26, pp.4, 2004, https://doi.org/10.5012/bkcs.2005.26.4.655
- Synthesis of Symmetric Diallyl Disulfides from Baylis-Hillman Acetates vol.27, pp.11, 2004, https://doi.org/10.5012/bkcs.2006.27.11.1900
- Facile Synthesis of Aza-Baylis-Hillman Adducts of Cycloalkenones: FeCl3-Mediated Direct Amination of Baylis-Hillman Alcohols vol.29, pp.6, 2004, https://doi.org/10.5012/bkcs.2008.29.6.1099
- Synthesis of β-Aryl Substituted N-Tosyl Aza-Baylis-Hillman Adducts: Heck Reaction of N-Tosyl Aza-Baylis-Hillman Adducts vol.29, pp.8, 2004, https://doi.org/10.5012/bkcs.2008.29.8.1583
- Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
- Recent advances in the Pd-catalyzed chemical transformations of Baylis-Hillman adducts vol.65, pp.43, 2009, https://doi.org/10.1016/j.tet.2009.07.034
- Quinolines from Morita–Baylis–Hillman acetates of 2-azidobenzaldehydes vol.65, pp.46, 2004, https://doi.org/10.1016/j.tet.2009.09.047
- Construction of a Tetracyclic Butterfly-Like Scaffold: Palladium-Catalyzed Heck/Arylation Cascade vol.16, pp.8, 2004, https://doi.org/10.1002/chem.200903029
- Palladium-catalyzed synthesis of indane and cyclobuta[a]indenes from homoallylic alcohols derived from Baylis–Hillman adducts: base-dependent stereoselectivity for the benzylidene group in cyclo vol.67, pp.19, 2011, https://doi.org/10.1016/j.tet.2011.03.070
- Palladium Catalyzed Annulation of Morita‐Baylis‐Hillman Adducts: Synthesis of Indene and Indanone Derivatives vol.5, pp.5, 2020, https://doi.org/10.1002/slct.201903515