DOI QR코드

DOI QR Code

A Convenient and Versatile Synthesis of 2' (and 3')-Amino (and azido)-2' (and 3')-deoxyadenosine as Diverse Synthetic Precursors of Cyclic Adenosine Diphosphate Ribose (cADPR)

  • Kim, Beom-Tae (Department of Chemistry, and Research Center of Bioactive Materials, College of Natural Science, Chonbuk National University) ;
  • Kim, Seung-Ki (Department of Chemistry, and Research Center of Bioactive Materials, College of Natural Science, Chonbuk National University) ;
  • Lee, Seung-Jae (Department of Chemistry, and Research Center of Bioactive Materials, College of Natural Science, Chonbuk National University) ;
  • Hwang, Ki-Jun (Department of Chemistry, and Research Center of Bioactive Materials, College of Natural Science, Chonbuk National University)
  • Published : 2004.02.20

Abstract

As diverse synthetic precursors of cyclic adenosine diphosphate ribose (cADPR), several adenosine derivatives in which azido or amino group is introduced at 2'- or 3'-position of the sugar moiety of adenosine were prepared from readily available adenosine via conventional protocols. These synthetic sequence employs very efficient reactions conditions that proceed at or below ambient temperature with actual yields of >80% for each individual step.

Keywords

References

  1. Guse, A. H. J. Mol. Med. 2000, 78, 26. https://doi.org/10.1007/s001090000076
  2. Zhang, F.-J.; Gu, Q.-M.; Sih, C. J. Bioorg. & Med. Chem. 1999, 7, 653. https://doi.org/10.1016/S0968-0896(98)00256-9
  3. Lee, H. C.; Munshi, C.; Graeff, R. Mol. Cell. Biochem. 1999, 193, 89. https://doi.org/10.1023/A:1006916311348
  4. Takasawa, S.; Nata, S.; Yonekura, H.; Okamoto, H. Science 1993, 259, 370. https://doi.org/10.1126/science.8420005
  5. Lee, H. C. Mol. & Cell. Biochem. 1994, 138, 229. https://doi.org/10.1007/BF00928466
  6. Currie, K.; Swann, K.; Galione, A.; Scott, R. H. Mol. Biol. Cell 1992, 3, 1415. https://doi.org/10.1091/mbc.3.12.1415
  7. Takasawa, S.; Akiyama, T.; Nata, K.; Kuroki, M.; Tohgo, A.; Noguchi, N.; Kobayashi, S.; Kato, I.; Katada, T.; Okamoto, H. J. Biol. Chem. 1998, 273, 2497. https://doi.org/10.1074/jbc.273.5.2497
  8. Takasawa, S.; Nata, K.; Yonekura, H.; Okamoto, H. Science 1993, 259, 370. https://doi.org/10.1126/science.8420005
  9. Jayaraman, T.; Ondriasova, E.; Ondrias, K.; Harnick, D. J.; Marks, A. R. Proc. Natl. Acad. Sci. 1995, 92, 6007. https://doi.org/10.1073/pnas.92.13.6007
  10. Guse, A. H.; da Silva, C. P.; Berg, I.; Weber, K.; Heyer, P.; Hohenegger, M.; Ashamu, G. A.; Skapenko, A. L.; Schulze-Koops, H.; Potter, B. V. L.; Mayr, G. W. Nature 1999, 398, 70. https://doi.org/10.1038/18024
  11. Rakovic, R.; Cui, Y.; Iino, S.; Galione, A.; Ashamu, G. A.; Potter,B. V. L.; Terrar, D. A. J. Biol. Chem. 1999, 274, 17820. https://doi.org/10.1074/jbc.274.25.17820
  12. Bailey, V. C.; Sethi, J. K.; Fortt, S. M.; Galione, A.; Potter, B. V. L. Chemistry & Biology 1997, 4, 51. https://doi.org/10.1016/S1074-5521(97)90236-2
  13. Shuto, S.; Fukuoka, M.; Manikowsky, A.; Ueno, Y.; Nakano, T.; Kuroda, H.; Kuroda, H.; Matsuda, A. J. Am. Chem. Soc. 2001, 123, 8750. https://doi.org/10.1021/ja010756d
  14. Wong, L.; Aarhus, R.; Lee, H. C.; Walseth, T. F. Biochim. Biophys. Acta 1999, 1472, 555. https://doi.org/10.1016/S0304-4165(99)00161-0
  15. Chen, B.-C.; Quinlan, S. L.; Reid, J. G. Tetrahedron Lett. 1995,36, 7961. https://doi.org/10.1016/0040-4039(95)01753-5
  16. Samano, M. C.; Robins, M. J. Tetrahedron Lett. 1989, 30, 2329. https://doi.org/10.1016/S0040-4039(01)80390-7
  17. Van Calenbergh, S.; Van Den Eeckhout, E.; Herdewijn, P.; DeBruyn, A.; Verlinde, C. L. M. J.; Hol, W. G. J.; Callens, M.; VanAerschot, A.; Rozenski, J. Helv. Chim. Acta 1994, 77, 631. https://doi.org/10.1002/hlca.19940770306
  18. Botta, O.; Moyroud, E.; Lobato, C.; Strazewski, P. Tetrahedron1998, 54, 13529. https://doi.org/10.1016/S0040-4020(98)00819-9
  19. Ogilvie, K. K.; Beaucage, S. L.; Schifman, A. L.; Theriault, N. Y.;Sadana, K. L. Can. J. Chem. 1978, 56, 2768. https://doi.org/10.1139/v78-457
  20. Robins, M. J.; Sarker, S.; Samano, V.; Wnuk, S. F. Tetrahedron 1997, 53, 447. https://doi.org/10.1016/S0040-4020(96)01035-6
  21. Hansske, F.; Madej, D.; Robins, M. J. Tetrahedron 1984, 40, 125. https://doi.org/10.1016/0040-4020(84)85111-X
  22. Kawashima, E.; Aoyama, Y.; Radwan, M. F.; Miyahara, M.; Sekine, T.; Kainosho, M.; Kyogoku, Y.; Ishido, Y. Nucleosides Nucleotides 1995, 14, 333. https://doi.org/10.1080/15257779508012375
  23. Robins, M. J.; Samano, V.; Johnson, M. D. J. Org. Chem. 1990, 55, 410. https://doi.org/10.1021/jo00289a004
  24. Wu, J.-C.; Bazin, H.; Chattopadhyaya, J. Tetrahedron 1987, 43, 2355. https://doi.org/10.1016/S0040-4020(01)86822-8
  25. Czernecki, S.; Valery, J.-M. Synthesis 1991, 239.
  26. Bressi, J. C.; Verlinde, C. L. M. J.; Aronov, A. M.; Le Shaw, M.;Shin, S. S.; Nguyen, L. N.; Suresh, S.; Buckner, F. S.; VanVoorhis, W. C.; Kuntz, I. D.; Hol, W. G. J.; Gelb, M. H. J. Med.Chem. 2001, 44, 2080. https://doi.org/10.1021/jm000472o
  27. Zhang, W.; Robins, M. J. Tetrahedron Lett. 1992, 33, 1177. https://doi.org/10.1016/S0040-4039(00)91889-6

Cited by

  1. Synthesis of 3′-Amino-3′-Deoxyguanosine and 3′-Amino-3′-Deoxyxyloguanosine Monophosphate Hepdirect Prodrugs from Guanosine vol.28, pp.10, 2009, https://doi.org/10.1080/15257770903307151
  2. Synthesis of Stable Aminoacyl-tRNA Analogues Containing Triazole as a Bioisoster of Esters vol.15, pp.8, 2009, https://doi.org/10.1002/chem.200801563
  3. A Synthesis of Sugar-modified S-Adenosyl-L-homocysteine (AdoHcy) Analogues as Inhibitors of AdoHcy Hydrolase vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.171
  4. A Convenient Synthesis of 8-Alkyl-2' (or 3')-azido (or amino)-2' (or 3')-deoxyadenosine as Diverse Synthetic Precursors of Cyclic Adenosine Diphosphate Ribose (cADPR) vol.27, pp.7, 2004, https://doi.org/10.5012/bkcs.2006.27.7.986
  5. Straightforward C-8 Alkylation of 2'(or 3')-Azidoadenosine Derivatives by Utilizing Pd(0) Catalyst and Tetraalkyltin vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.915
  6. The Synthesis of Diverse Adenosine 5'-phosphonate Analogues as Chain Terminators against Hepatitis C Virus (HCV) vol.31, pp.6, 2004, https://doi.org/10.5012/bkcs.2010.31.6.1643
  7. Synthesis of 3′-azido-4′-ethynyl-3′,5′-dideoxy-5′-norarabinouridine: a new anti-HIV nucleoside analogue vol.67, pp.9, 2004, https://doi.org/10.1016/j.tet.2010.12.054
  8. Synthesis of scpBNA-mC, -A, and -G Monomers and Evaluation of the Binding Affinities of scpBNA-Modified Oligonucleotides toward Complementary ssRNA and ssDNA vol.81, pp.22, 2016, https://doi.org/10.1021/acs.joc.6b02036