DOI QR코드

DOI QR Code

Reconstitution of Iron Cores in Horse Spleen and Yeast-derived Recombinant Human H- and L-chain Ferritins

  • Kim, Sung-Won (Basic Science Research Institute, Chonbuk National University) ;
  • Jo, Min-Young (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Yokota, Yasuhiro (Research Institute of Natural Science, Okayama University of Science) ;
  • Chung, Yun-Jo (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Park, Chung-Ung (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Kim, Kyung-Suk (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Published : 2004.02.20

Abstract

Recombinant human ferritin homopolymers (rHF and rLF) were successfully produced in the Saccharomyces cerevisiae Y2805, which was transformed with human ferritin H or L-chain genes, respectively. In order to characterize the molecular properties of the recombinant ferritins in relation to mineralization, the proteins were isolated and apoferritins were prepared. The apoferritins were reconstituted with 2000 Fe atoms per protein molecule under various experimental conditions (the concentration of the protein, the buffer concentration of the MOPS buffer, the total volume of the reaction and the reconstitution method). The structure and composition of the iron cores formed in the ferritins were examined using transmission electron microscopy. The recombinant ferritins behaved in a similar manner to other mammalian ferritins in accumulating iron in the core. Proteins of rHF and rLF showed varying reconstitution yields of 37-72% depending on the reaction conditions. In general, the rHF showed higher reconstitution yield than the rLF at the protein concentrations and the reaction volumes we examined. Iron cores with a similar mean particle size were obtained in the rHF, rLF and horse spleen ferritin reconstituted at a protein concentration of 1.0 mg/mL. Electron diffraction of all the three ferritins showed 2-3 diffuse lines, with d-spacings corresponding to those of the mineral ferrihydrite with a limited crystallinity.

Keywords

References

  1. Mann, S. Nature 1988, 332, 119. https://doi.org/10.1038/332119a0
  2. Kim, Y.-I.; Kang, H.-J.; Kim, D.; Lee, C.-S. Bull. Korean Chem.Soc. 2003, 24, 593. https://doi.org/10.5012/bkcs.2003.24.5.593
  3. Jeong, Y. I.; Ryu, J. G.; Kim, Y. H.; Kim, S. H. Bull. KoreanChem. Soc. 2002, 23, 872. https://doi.org/10.5012/bkcs.2002.23.6.872
  4. Harrison, P. M.; Arosio, P. Biochim. Biophys. Acta 1996, 1275,161. https://doi.org/10.1016/0005-2728(96)00022-9
  5. Chasteen, M. D.; Harrison, P. M. J. Struc. Biol. 1999, 126, 182. https://doi.org/10.1006/jsbi.1999.4118
  6. Wade, V. J.; Levi, S.; Arosio, P.; Treffry, A.; Harrison, P. M.;Mann, S. J. Mol. Biol. 1991, 221, 1443. https://doi.org/10.1016/0022-2836(91)90944-2
  7. Meldrum, F. C.; Douglas, T.; Levi, S.; Arosio, P.; Mann, S. J.Inorg. Biochem. 1995, 58, 59. https://doi.org/10.1016/0162-0134(94)00037-B
  8. Mun, H.-R.; Kim, K.-S.; Lee, J.-H. Kor. Soc. Electron Microscopy1999, 29, 323.
  9. Mann, S.; Meldrum, F. C. Adv. Mater. 1991, 3, 316. https://doi.org/10.1002/adma.19910030611
  10. Meldrum, F. C.; Wade, V. J.; Nimmo, D. L.; Heywood, B. R.;Mann, S. Nature 1991, 349, 684. https://doi.org/10.1038/349684a0
  11. Yamashita, I. Thin Solid Films 2001, 393, 12. https://doi.org/10.1016/S0040-6090(01)01083-5
  12. Seo, H.-Y.; Chung, Y.-J.; Kim, S.-J.; Park, C.-U.; Kim, K.-S. Appl.Microbiol. Biotech. 2003, 63, 57. https://doi.org/10.1007/s00253-003-1350-3
  13. Santambrogio, P.; Levi, S.; Cozzi, A.; Rovida, E.; Albertini, A.;Arosio, P. J. Biol. Chem. 1993, 268, 12744.
  14. Kim, K.-S.; Mun, H.-R.; Lee, J.-H. Inorg. Chim. Acta 2000, 298,107. https://doi.org/10.1016/S0020-1693(99)00423-5
  15. Chang, S.-R.; Kim, Y.-T.; Kim, K.-S. J. Biochem. Mol. 1995, 28,238.
  16. Hess, H. H.; Lees, M. B.; Derry, J. E. Anal. Biochem. 1978, 85,295. https://doi.org/10.1016/0003-2697(78)90304-4
  17. Levi, S.; Salfeld, J.; Franceschinelli, F.; Cozzi, A.; Dorner, M.;Arosio, P. Biochemistry 1989, 28, 5179. https://doi.org/10.1021/bi00438a040
  18. Levi, S.; Yewdall, J.; Harrison, P. M.; Santambrogio, P.; Cozzi, A.;Rovida, E.; Albertini, A.; Arosio, P. J. Biochem. 1992, 288, 591.
  19. Levi, S.; Santambrogio, P.; Cozzi, A.; Rovida, E.; Corsi, B.;Tamborini, E.; Spada, S.; Albertini, A.; Arosio, P. J. Mol. Biol.1994, 238, 649. https://doi.org/10.1006/jmbi.1994.1325

Cited by

  1. Crystal Structure of Ferrihydrite Nanoparticles Synthesized in Ferritin vol.29, pp.10, 2004, https://doi.org/10.5012/bkcs.2008.29.10.1969
  2. Purification and Biochemical Characterization of Recombinant Human H-ferritins from Saccharomyces cerevisiae vol.16, pp.2, 2011, https://doi.org/10.1007/s12257-010-0272-z
  3. 효모에서 생산한 재조합 human L-ferritin의 생화학적 특성 및 나노입자의 철산화물 합성 vol.26, pp.2, 2011, https://doi.org/10.7841/ksbbj.2011.26.2.119