DOI QR코드

DOI QR Code

The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method

  • Choi, Yoon-Jeong (Department of Chemistry, and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Lee, Yoon-Sup (Department of Chemistry, and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2004.11.20

Abstract

Several critical geometries associated with the rearrangement of $CH_3SNO_2\;to\;CH_3SONO$ are calculated with the density functional theory (DFT) method and compared with those of the ab initio molecular orbital methods. There are two probable pathways for this rearrangement, one involving the transition state of an oxygen migration and the other through the homolytic decomposition to radicals. The reaction barrier via the transition state is about 60 kcal/mol and the decomposition energy into radicals about 35 kcal/mol, suggesting that the reaction pathway via the homolytic cleavage to radical species is energetically favorable. Since even the homolytic cleavage requires large energies, the rearrangement reaction is unlikely without the aid of catalysts.

Keywords

References

  1. Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898. https://doi.org/10.1126/science.1281928
  2. Galla, H.-J. Angew. Chem. Int. Ed. Engl. 1993, 23, 378.
  3. Traylor, T. G.; Sharma, V. S. Biochemistry 1992, 31, 2874. https://doi.org/10.1021/bi00126a005
  4. van der Vliet, A.; Hoen, P. A. C.; Wong, P. S.-Y.; Bast, A.; Cross, C. E. J. Biol. Chem. 1998, 273, 30225. https://doi.org/10.1074/jbc.273.46.30225
  5. Feelisch, M. J. Cardiovasc. Pharmacol. 1991, 17, Suppl. 3, 25.
  6. Artz, J. D.; Yang, K.; Lock, J.; Sanchez, C.; Bennett, B. M.; Thatcher, G. R. J. Chem. Commun. 1996, 927.
  7. Davidson, C.; Kaminski, P.; Wu, M.; Wolin, M. Am. J. Physiol. 1996, 270, H1038.
  8. Zhang, H.; Squadrito, G.; Uppu, R.; Lemercier, J.-N.; Cuerto, R.; Pryor, W. Arch. Biochem. Biophys. 1997, 339, 183. https://doi.org/10.1006/abbi.1996.9863
  9. Cameron, D. R.; Borrajo, A. M. P.; Bennet, B. M.; Thatcher, G. R. J. Can. J. Chem. 1995, 73, 102.
  10. Fukui, K. J. Phys. Chem. 1970, 74, 4161. https://doi.org/10.1021/j100717a029
  11. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. https://doi.org/10.1063/1.456010
  12. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1990, 94, 5523. https://doi.org/10.1021/j100377a021
  13. Cramer, C.; Truhlar, D. J. Comput. Chem. 1992, 13, 1089. https://doi.org/10.1002/jcc.540130907
  14. Cramer, C.; Trulhler, D. J. Comput.-Aided Mol. Des. 1992, 6, 629. https://doi.org/10.1007/BF00126219
  15. Chan, S. L.; Lim, C. J. Phys. Chem. 1994, 98, 692. https://doi.org/10.1021/j100053a051
  16. Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622. https://doi.org/10.1063/1.456415
  17. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537. https://doi.org/10.1063/1.458892
  18. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. https://doi.org/10.1063/1.460205
  19. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 110, 6158. https://doi.org/10.1063/1.478522
  20. McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. https://doi.org/10.1063/1.438980
  21. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. https://doi.org/10.1063/1.438955
  22. Han, Y.-K.; Kim, K. H.; Son, S.-K.; Lee, Y. S. Bull. Korean Chem. Soc. 2002, 23, 1267. https://doi.org/10.5012/bkcs.2002.23.9.1267
  23. Choi, Y. J.; Bae, C.; Lee, Y. S.; Lee, S. Bull. Korean Chem. Soc. 2003, 24, 728. https://doi.org/10.5012/bkcs.2003.24.6.728
  24. Frisch, M. J. et al. Gaussian 03 (Revison A.1); Gaussian Inc.: Pittsburgh, PA, 2003.
  25. Wang, S. K.; Zhang, Q. Z.; Zhou, J. H.; Gu, Y. S. Chinese Chem. Lett. 2002, 13, 805.
  26. Oae, S.; Shinhama, K.; Fujimori, K.; Kim, Y. H. Bull. Chem. Soc. Jpn. 1980, 775.

Cited by

  1. A molecular mechanism for direct generation of nitric oxide, peroxynitrite and superoxide in the reaction of nitroglycerin with a cysteil-cysteine derivative vol.128, pp.4-6, 2011, https://doi.org/10.1007/s00214-010-0802-y
  2. DFT studies on the multi-channel reaction of CH3S+NO2 vol.107, pp.6, 2007, https://doi.org/10.1002/qua.21291
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Dinitrosyl iron complexes with thiolate ligands: Physico-chemistry, biochemistry and physiology vol.21, pp.1, 2009, https://doi.org/10.1016/j.niox.2009.03.005
  5. Transnitrosation from a stable thionitrate to an amine with concomitant formation of a sulfenic acid vol.34, pp.6, 2013, https://doi.org/10.1080/17415993.2013.794801