DOI QR코드

DOI QR Code

Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD

  • Bae, Byoung-Jae (National Research Laboratory, Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Lee, Kwang-Yeol (Department of Chemistry, Korea University) ;
  • Seo, Won-Seok (National Research Laboratory, Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Miah, Md. Arzu (National Research Laboratory, Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Kim, Keun-Chong (Department of Management Information System, College of Business Management, Hong-Ik University) ;
  • Park, Joon T. (National Research Laboratory, Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2004.11.20

Abstract

The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti($O^iPr)_2(CH_3COCHCONEt_2)_2$ (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and $^1H/^{13}C$ NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis($CONEt_2$), trans($COCH_3$) configuration (1a) in a distorted octahedral environment. Variable-temperature $^1H$ NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20$^{\circ}C$ in toluene-$d_8$ solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500$^{\circ}C$ under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500$^{\circ}$ using a bubbler-based MOCVD method.

Keywords

References

  1. Ezhilvalavan, S.; Tseng, T.-Y. Mater. Chem. Phys. 2000, 65, 227. https://doi.org/10.1016/S0254-0584(00)00253-4
  2. Campbell, S. A.; Glimer, D. C.; Wang, X.-C.; Hsieh, M.-T.; Kim, H.-S.; Gladfelter, W. L.; Yan, J. IEEE Trans. Electron Devices 1997, 44, 104. https://doi.org/10.1109/16.554800
  3. Dietz, G. W.; Schumacher, M.; Waser, R.; Streiffer, S. K.; Basceri, C.; Kingon, A. J. Appl. Phys. 1997, 82, 2359. https://doi.org/10.1063/1.366045
  4. Jones, R. E.; Zurcher, P.; Chu, P.; Taylor, D. J.; Lii, Y. T.; Jiang, B.; Maniar, P. D.; Gillespie, S. J. Microelectron. Eng. 1995, 29, 3. https://doi.org/10.1016/0167-9317(95)00106-9
  5. Kang, C. S.; Cho, H. J.; Lee, B. T.; Lee, K. H. Jpn. J. Appl. Phys. 1997, 36, 6946. https://doi.org/10.1143/JJAP.36.6946
  6. Peng, C. H.; Desu, S. B. J. Am. Ceram. Soc. 1994, 77, 1799. https://doi.org/10.1111/j.1151-2916.1994.tb07054.x
  7. Rees, W. S. CVD of Nonmetals; VCH: Weinheim, 1996.
  8. Bilodeau, S. M.; Carl, R.; Buskirk, P. V.; Ward, J. Solid State Technol. 1997, 236.
  9. Kawahara, T.; Yamamuka, M.; Makita, T.; Yuuki, A.; Mikami, N.; Ono, K. Mat. Res. Soc. Symp. Proc. 1995, 361, 361.
  10. Hwang, C. S.; Park, S. O.; Cho, H.-J.; Kang, H.-K.; Lee, S. I.; Lee, M. Y. Appl. Phys. Lett. 1995, 67, 2819. https://doi.org/10.1063/1.114795
  11. Taylor, C. J.; Gilmer, D. C.; Colombo, D. G.; Wilk, G. D.; Campbell, S. A.; Roberts, J.; Gladfelter, W. L. J. Am. Chem. Soc. 1999, 121, 5220. https://doi.org/10.1021/ja984446f
  12. Won, T.; Yoon, S.; Kim, H. J. Electrochem. Soc. 1992, 139, 3284. https://doi.org/10.1149/1.2069068
  13. Takahashi, Y.; Tsuda, K.; Sugiyama, K.; Minoura, H.; Makino, D.; Tsuiki, M. J. Chem. Soc., Faraday Trans. 1981, 77, 1051. https://doi.org/10.1039/f19817701051
  14. Turgambaeva, A. E.; Krisyuk, V. V.; Sysoev, S. V.; Igumenov, I. K. Chem. Vap. Deposition 2001, 7, 121. https://doi.org/10.1002/1521-3862(200105)7:3<121::AID-CVDE121>3.0.CO;2-R
  15. Ryu, H.; Kim, J. S.; Cho, S.; Moon, S. H. J. Electrochem. Soc. 1999, 146, 1117. https://doi.org/10.1149/1.1391731
  16. Lee, J.; Rhee, S. Electrochem. Solid-State Lett. 1999, 2, 510. https://doi.org/10.1149/1.1390886
  17. Ando, F.; Shimizu, H.; Kobayashi, I.; Okada, M. Jpn. J. Appl. Phys. 1997, 36, 5820. https://doi.org/10.1143/JJAP.36.5820
  18. Roeder, J. F.; Vaarstra, B. A.; Van Buskirk, P. C.; Beratan, H. R. Mater. Res. Soc. Symp. Proc. 1996, 415, 123.
  19. Beach, D. B.; Vallet, C. E. Mater. Res. Soc. Symp. Proc. 1996, 415, 225.
  20. Gardiner, R. A.; Van Buskirk, P. C.; Kirlin, P. S. Mater. Res. Soc. Symp. Proc. 1994, 335, 221.
  21. Hong, S. H.; Rim, S. K.; Lee, I.; Min, Y. S.; Kim, D.; Lee, W. I. Thin Solid Films 2002, 409, 82. https://doi.org/10.1016/S0040-6090(02)00108-6
  22. Min, Y.; Cho, Y. J.; Kim, D.; Lee, J.; Kim, B. M.; Lim, S. K.; Lee, I. K.; Lee, W. I. Chem. Vap. Deposition 2001, 7, 146. https://doi.org/10.1002/1521-3862(200107)7:4<146::AID-CVDE146>3.0.CO;2-X
  23. Lee, J.; Kim, J.; Shim, J.; Rhee, S. J. Vac. Sci. Technol. A 1999, 17, 3033. https://doi.org/10.1116/1.582001
  24. Jones, A. C.; Leedham, T. J.; Wright, P. J.; Crosbie, M. J.; Fleeting, K. A.; Otway, D. J.; OBrien, P.; Pemble, M. E. J. Mater. Chem. 1998, 8, 1773. https://doi.org/10.1039/a802933d
  25. Hong, S. T.; Lim, J. T.; Lee, J. C.; Xue, M.; Lee, I.-M. Bull. Korean Chem. Soc. 1996, 17, 637.
  26. Wolf, W. R.; Sievers, R. E.; Brown, G. H. Inorg. Chem. 1972, 11, 1995. https://doi.org/10.1021/ic50115a003
  27. Sheldrick, G. M. Acta Crystallogr. A 1990, 46, 467. https://doi.org/10.1107/S0108767390000277
  28. Sheldrick, G. M. Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1993.
  29. Bickley, D. G.; Serpone, N. Inorg. Chem. 1976, 15, 948. https://doi.org/10.1021/ic50158a044
  30. Bradley, D. C.; Holloway, C. E. Chem. Commun. 1965, 284.
  31. Fay, R. C.; Lindmark, A. F. J. Am. Chem. Soc. 1983, 105, 2118. https://doi.org/10.1021/ja00346a004
  32. Bickley, D. G.; Serpone, N. Inorg. Chem. 1979, 18, 2200. https://doi.org/10.1021/ic50198a030
  33. Bird, P. H.; Fraser, A. R.; Lau, C. F. Inorg. Chem. 1973, 12, 1322. https://doi.org/10.1021/ic50124a021
  34. Errington, R. J.; Ridland, J.; Clegg, W.; Coxall, R. A.; Sherwood, J. M. Polyhedron 1998, 17, 659. https://doi.org/10.1016/S0277-5387(97)00418-X
  35. Williams, P. A.; Jones, A. C.; Wright, P. J.; Crosbie, M. J.; Bickley, J. F.; Steiner, A.; Davies, H. O.; Leedham, T. J. Chem. Vap. Deposition 2002, 8, 110. https://doi.org/10.1002/1521-3862(20020503)8:3<110::AID-CVDE110>3.0.CO;2-U
  36. Jung, O.-J.; Kim, S.-H.; Cheong, K.-H.; Li, W.; Saha, S. I. Bull. Korean Chem. Soc. 2003, 24, 49. https://doi.org/10.5012/bkcs.2003.24.1.049
  37. Lee, M. S.; Cheon, I. C.; Kim, Y. I. Bull. Korean Chem. Soc. 2003, 24, 1155. https://doi.org/10.5012/bkcs.2003.24.8.1155
  38. Cullity, B. D. Elements of X-ray Diffraction; Addison-Wesley: Reading, Mass, 1978.
  39. Gilmer, D. C.; Colombo, D. G.; Taylor, C. J.; Roberts, J.; Haugstad, G.; Campbell, S. A.; Kim, H.; Wilk, G. D.; Gribelyuk, M. A.; Gladfelter, W. L. Chem. Vap. Deposition 1998, 4, 9. https://doi.org/10.1002/(SICI)1521-3862(199801)04:01<9::AID-CVDE9>3.3.CO;2-V

Cited by

  1. Thin Films using a Heteroleptic Titanium Complex: Precursor Evaluation and Investigation of Optical, Photoelectrochemical and Electrical Properties vol.20, pp.7-8-9, 2014, https://doi.org/10.1002/cvde.201407125
  2. Preparation of Photocatalytically Active Titanium Dioxide Doped with Transition Metal Oxides vol.88, pp.3, 2018, https://doi.org/10.1134/S1070363218030210
  3. Formation of Yttrium Oxide Clusters Using Pulsed Laser Vaporization vol.26, pp.2, 2005, https://doi.org/10.5012/bkcs.2005.26.2.345
  4. Synthesis of New Donor-functionalized Alcohols as Organic Ligands for Metal Precursors of Metal Organic Chemical Vapor Deposition vol.26, pp.5, 2005, https://doi.org/10.5012/bkcs.2005.26.5.829