DOI QR코드

DOI QR Code

Transport Properties of Dumbbell Molecules by Equilibrium Molecular Dynamics Simulations

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2004.05.20

Abstract

We presents new results for transport properties of dumbbell fluids by equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. It is evident that the interaction between dumbbell molecules is less attractive than that between spherical molecules which leads to higher diffusion and to lower friction. The calculated viscosity, however, is almost independent on the molecular elongation within statistical error bar, which is contradicted to the Stokes' law. The calculated thermal conductivity increases and then decreases as molecular elongation increases. These results of viscosity and thermal conductivity for dumbbell molecules by EMD simulations are inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations. The possible limitation of the Green-Kubo and Einstein formulas with regard to the calculations of viscosity and thermal conductivity for molecular fluids such as the missing rotational degree of freedom is pointed out.

Keywords

References

  1. Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1959, 31, 459. https://doi.org/10.1063/1.1730376
  2. Rahman, A. Phys. Rev. 1964, 136A, 405.
  3. Berne, B. J.; Harp, G. D. Advan. Chem. Phys. 1970, 17, 63. https://doi.org/10.1002/9780470143636.ch3
  4. Harp, G. D.; Berne, B. J. Phys. Rev. 1970, A2, 975.
  5. Rahman, A.; Stilllnger, F. H. J. Chem. Phys. 1971, 55, 3336. https://doi.org/10.1063/1.1676585
  6. Streett, W. B.; Tildesley, D. J. Proc. R. Soc. Lond. 1976, A348, 485.
  7. Barojas, J.; Levcsque, D.; Quentrec, B. Phys. Rev. 1973, A7, 1092.
  8. Cheung, P. S. Y.; Powles, J. G. Mol. Phys. 1975, 30, 921. https://doi.org/10.1080/00268977500102461
  9. Singer, K.; Taylor, A.; Singer, J. V. L. Mol. Phys. 1977, 33, 1757. https://doi.org/10.1080/00268977700101451
  10. Lee, S. H.; Cummings, P. T. Mol. Sim. 2001, 27, 139. https://doi.org/10.1080/08927020108023020
  11. Tokumasu, T.; Ohara, T.; Kamijo, K. J. Chem. Phys. 2003, 118, 3677. https://doi.org/10.1063/1.1540089
  12. Evans, D. J. Mol. Phys. 1977, 34, 317. https://doi.org/10.1080/00268977700101751
  13. Evans, D. J.; Murad, S. Mol. Phys. 1977, 34, 327. https://doi.org/10.1080/00268977700101761
  14. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford Univ. Press: Oxford, 1987; p 64.
  15. Lee, S. H.; Kim, H. S.; Pak, H. J. Chem. Phys. 1992, 97, 6933. https://doi.org/10.1063/1.463647
  16. Lee, S. H.; Park, D. K.; Kang, D. B. Bull. Korean Chem. Soc.2003, 24, 178. https://doi.org/10.5012/bkcs.2003.24.2.178
  17. Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. J. Chem. Phys.1990, 93, 7137. https://doi.org/10.1063/1.459437
  18. Kubo, R. Rep. Prog. Phys. 1966, 29, 255. https://doi.org/10.1088/0034-4885/29/1/306

Cited by

  1. Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids vol.28, pp.10, 2004, https://doi.org/10.5012/bkcs.2007.28.10.1697
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Molecular Dynamics Simulation Study for Shear Viscosity of Water at High Temperatures using SPC/E Water Model vol.35, pp.2, 2004, https://doi.org/10.5012/bkcs.2014.35.2.644
  4. Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases vol.35, pp.12, 2004, https://doi.org/10.5012/bkcs.2014.35.12.3527