References
- Ambacher, O. J. Phys. D: Appl. Phys. 1998, 31, 2653. https://doi.org/10.1088/0022-3727/31/20/001
- Sakai, S.; Kurai, S.; Abe, T.; Naoi, Y. Jpn. J. Appl. Phys. 1996, 35,L77. https://doi.org/10.1143/JJAP.35.L77
- Porowski, S. J. Crystal Growth 1996, 166, 583. https://doi.org/10.1016/0022-0248(96)00116-9
- Balkas, C. M.; Davis, R. F. J. Am. Ceram. Soc. 1996, 79, 2309. https://doi.org/10.1111/j.1151-2916.1996.tb08977.x
- Joint Committee on Powder Diffraction Standards (JCPDS) CardNo. 20-0426.
- Yang, Y.; Tran, C.; Leppert, V.; Risbud, S. H. Mater. Lett. 2000,43, 240. https://doi.org/10.1016/S0167-577X(99)00266-9
- Jung, W.-S.; Park, C.; Han, S. Bull. Korean Chem. Soc. 2003, 24,1011. https://doi.org/10.5012/bkcs.2003.24.7.1011
- Smith, M. E. Appl. Magn. Reson. 1993, 4, 1. https://doi.org/10.1007/BF03162555
- Han, O. H.; Timken, H. K. C.; Oldfield, E. J. Chem. Phys. 1988,89, 6046. https://doi.org/10.1063/1.455418
- Wood, G. L.; Pruss, E. A.; Paine, R. T. Chem. Mater. 2001, 13, 12. https://doi.org/10.1021/cm0006906
- Jung, W.-S. Mater. Lett. 2002, 57, 110. https://doi.org/10.1016/S0167-577X(02)00713-9
- Wolter, S. D.; Luther, B. P.; Waltemyer, D. L.; Onneby, C.;Mohney, S. E.; Molnar, R. J. Appl. Phys. Lett. 1997, 70, 2156. https://doi.org/10.1063/1.118944
- Peng, H. Y.; Zhou, X. T.; Wang, N.; Zheng, Y. F.; Liao, L. S.; Shi,W. S.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2000, 327, 263. https://doi.org/10.1016/S0009-2614(00)00872-1
- Jung, W.-S.; Chung, Y. K.; Shin, D. M.; Kim, S.-D. Bull. Chem.Soc. Jpn. 2002, 75, 1263. https://doi.org/10.1246/bcsj.75.1263
- Han, W.; Fan, S.; Li, Q.; Hu, Y. Science 1997, 277, 1287. https://doi.org/10.1126/science.277.5330.1287
- Cheng, G. S.; Zhang, L. D.; Zhu, Y.; Fei, G. T.; Li, L.; Mo, C. M.;Mao, Y. Q. Appl. Phys. Lett. 1999, 75, 2455. https://doi.org/10.1063/1.125046
- Campbell, W. B. In Whisker Technology; Levitt, A. P., Ed.; Wiley-Interscience: New York, U. S. A., 1970; Chap. 2.
- Ogino, T.; Aoki, M. Jpn. J. Appl. Phys. 1980, 19, 2395. https://doi.org/10.1143/JJAP.19.2395
Cited by
- Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine vol.6, pp.12, 2016, https://doi.org/10.3390/nano6030038
- Scallion-Root-Shaped GaN Nanorods Grown by Two-Step Method and Study on their Properties vol.652-654, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.652-654.197
- N Nanoparticles with Tunable Indium Content: Synthesis and Characterization vol.21, pp.52, 2015, https://doi.org/10.1002/chem.201502875
- Ga (Nano-Galfenol) vol.6, pp.5, 2018, https://doi.org/10.1039/C7TC04618A
- Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts pp.32, 2008, https://doi.org/10.1039/b804943b
- A Study of Oxygen Content in GaN, AlN, and GaAlN Powders vol.155, pp.6, 2008, https://doi.org/10.1149/1.2898869
- Synthesis and Characterization of Highly Crystalline Anatase Nanowire Arrays vol.25, pp.9, 2004, https://doi.org/10.5012/bkcs.2004.25.9.1341
- Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.131
- Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia vol.26, pp.9, 2004, https://doi.org/10.5012/bkcs.2005.26.9.1354
- Advances in Gallium Oxonitride Ceramics: A New Class of Materials in the System Ga-O-N vol.7, pp.10, 2005, https://doi.org/10.1002/adem.200500127
- Growth of One-dimensional Gallium Nitride Nano- and Microstructures in an Alumina Matrix Containing Gallium Oxide vol.27, pp.8, 2004, https://doi.org/10.5012/bkcs.2006.27.8.1235
- Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder vol.36, pp.2, 2004, https://doi.org/10.1016/j.physe.2006.12.001
- Synthesis and optical properties of single-crystalline GaN nanorods vol.82, pp.5, 2008, https://doi.org/10.1016/j.vacuum.2007.09.005
- On the ammonolysis of Ga2O3: An XRD, neutron diffraction and XAS investigation of the oxygen-rich part of the system Ga2O3GaN vol.183, pp.3, 2010, https://doi.org/10.1016/j.jssc.2009.12.024
- Structural and magnetic properties of Fe2CoGa Heusler nanoparticles vol.45, pp.29, 2004, https://doi.org/10.1088/0022-3727/45/29/295001
- Resolving the phase structure of nonstoichiometric Co2FeGa Heusler nanoparticles vol.112, pp.12, 2012, https://doi.org/10.1063/1.4770477
- Photocatalytic hydrogen evolution using nanocrystalline gallium oxynitride spinel vol.2, pp.45, 2014, https://doi.org/10.1039/c4ta03676j
- Effect of manganese doping on optical and magnetic properties of titanium dioxide nanostructures prepared by hydrothermal technique in the presence of thiourea vol.9, pp.12, 2014, https://doi.org/10.1049/mnl.2014.0120
- Nanostructured gallium nitride powder functionalized with a fluorophore terminated peptide vol.2, pp.9, 2015, https://doi.org/10.1088/2053-1591/2/9/095018
- Chemical Synthesis and Characterization of γ-Co2NiGa Nanoparticles with a Very High Curie Temperature vol.27, pp.20, 2004, https://doi.org/10.1021/acs.chemmater.5b02227
- Debye function analysis of nanocrystalline gallium oxide γ-Ga2O3 vol.231, pp.5, 2004, https://doi.org/10.1515/zkri-2015-1895