DOI QR코드

DOI QR Code

PROPERTIES AND SPECTRAL BEHAVIOUR OF CLUSTER RADIO HALOS

  • FERETTI L. (Istituto di Radioastronomia) ;
  • BRUNETTI G. (Istituto di Radioastronomia) ;
  • GIOVANNINI G. (Istituto di Radioastronomia, Dipartimento di Astronomia, Univ. Bologna) ;
  • KASSIM N. (Naval Research Laboratory) ;
  • ORRU E. (Dipartimento di Fisica, Univ.) ;
  • SETTI G. (Istituto di Radioastronomia, Dipartimento di Astronomia, Univ. Bologna)
  • Published : 2004.12.01

Abstract

Several arguments have been presented in the literature to support the connection between radio halos and cluster mergers. The spectral index distributions of the halos in A665 and A2163 provide a new strong confirmation of this connection, i.e. of the fact that the cluster merger plays an important role in the energy supply to the radio halos. Features of the spectral index (flattening and patches) are indication of a complex shape of the radiating electron spectrum, and are therefore in support of electron reacceleration models. Regions of flatter spectrum are found to be related to the recent merger. In the undisturbed cluster regions, instead, the spectrum steepens with the distance from the cluster center. The plot of the integrated spectral index of a sample of halos versus the cluster temperature indicates that clusters at higher temperature tend to host halos with flatter spectra. This correlation provides further evidence of the connection between radio emission and cluster mergers.

Keywords

References

  1. Arnaud, M., et al 2001, A&A, 365, L67 https://doi.org/10.1051/0004-6361:20000195
  2. Bacchi, M., Feretti, L., Giovannini, G., & Govoni, F. 2003,A&A, 400, 465 https://doi.org/10.1051/0004-6361:20030044
  3. Berrington, R. C., & Dermer, C. D., 2003, ApJ, 594, 709 https://doi.org/10.1086/376981
  4. Brunetti, G., Setti, G., Feretti, L., & Giovannini, G. 2001,MNRAS, 320, 365 https://doi.org/10.1046/j.1365-8711.2001.03978.x
  5. Brunetti, G., Blasi, P., Cassano, R., & Gabici, S. 2004, MNRAS, 350, 117
  6. Buote, D. A. 2001, ApJL, 553, L15 https://doi.org/10.1086/320500
  7. Deiss, B. M., Reich, W., Lesch, H., & Wielebinski, R. 1997, A&A, 321, 55
  8. Dolag, K., Bartelmann, M., & Lesch, H. 1999, A&A, 348, 351
  9. Dolag, K., Schindler, S., Govoni, F., & Feretti, L. 2001,A&A, 378, 777 https://doi.org/10.1051/0004-6361:20011219
  10. Dolag, K., Bartelmann, M., & Lesch, H. 2002, A&A, 387,383 https://doi.org/10.1051/0004-6361:20020241
  11. Elbaz, D., Arnaud, M., & Bohringer, H. 1995, A&A, 293, 337
  12. Feretti, L., B$\ddot{o}$hringer, H., Giovannini, G., & Neumann, D.1997a, A&A, 317, 432
  13. Feretti L., Giovannini G., & B$\ddot{o}$hringer H. 1997b, New Astron. 2, 501 https://doi.org/10.1016/S1384-1076(97)00034-1
  14. Feretti, L., Fusco-Femiano, R., Giovannini, G., & Govoni,F. 2001, A&A, 373, 106 https://doi.org/10.1051/0004-6361:20010581
  15. Feretti, L. 2003, in Texas in Tuscany, XXI Symp. on Rela-tivistic Astrophysics, eds. R. Bandeira, R. Maiolmo, F. Mannucci, World Scientif. Publ. Singapore, P. 209
  16. Feretti, L., Orru, E., Brunetti, G., Giovannini, G., Kassim,N., G., & Setti, G. 2004, A&A, 423, 111 https://doi.org/10.1051/0004-6361:20040316
  17. Gabici, S., & Blasi, P. 2003, ApJ, 583, 695 https://doi.org/10.1086/345429
  18. Giovannini, G., Feretti, L., Venturi, T., Kim, K.-T., & Kro-nberg, P. P. 1993, ApJ, 406, 399 https://doi.org/10.1086/172451
  19. Giovannini, G., & Feretti, L. 2000, New Astr., 5, 335 https://doi.org/10.1016/S1384-1076(00)00034-8
  20. Giovannini, G., & Feretti, L. 2002, in Merging Processesof Galaxy Clusters, eds. L. Feretti, I. M. Gioia & GGiovannini, ASSL, Kluwer Ac. Publish., p. 197
  21. Govoni, F., Feretti, L., Giovannini, G., B$\ddot{o}$hrmger, H.,Reiprich, T. H., & Murgia, M. 2001a, A&A, 376, 803 https://doi.org/10.1051/0004-6361:20011016
  22. Govoni, F., En$\ss$lin, T. A., Feretti, L., & Giovannini, G.2001b, A&A, 369, 441 https://doi.org/10.1051/0004-6361:20010115
  23. Govoni, F., Markevitch, M., Vikhlinin ,A., VanSpeybroeck, L., Feretti, L., & Giovannini, G. 2004, ApJ, 605, 695 https://doi.org/10.1086/382674
  24. Govoni, F., & Feretti, L. 2004, Int J Modern Physics D,Vol. 13, 1549, astro-ph/0410182 https://doi.org/10.1142/S0218271804005080
  25. Kempner, J. C., & David, L. P. 2004, MNRAS, 349, 385 https://doi.org/10.1111/j.1365-2966.2004.07534.x
  26. Komissarov, S. S., & Gubanov, A. G. 1994, A&A, 285, 27
  27. Kuo, P.-H., Hwang, C.-Y., & IP, W.-H. 2003, ApJ, 594, 732 https://doi.org/10.1086/376966
  28. Liang, H., Hunstead, R. W., Birkinshaw, M., & Andreani, P. 2000, ApJ, 544, 686 https://doi.org/10.1086/317223
  29. Markevitch, M., Mushotzky, R., Inoue, H., Yamashita, K., Furuzawa, A., & Tawara, Y. 1996, ApJ, 456, 437 https://doi.org/10.1086/176668
  30. Markevitch, M. & Vikhlmin, A. 2001, ApJ ,563, 95 https://doi.org/10.1086/323831
  31. Norman, M. L., & Bryan, G. L. 1999, in The radio galaxyMessier 87, eds. H. J. $R\ddot ose$, & K. Meisenheimer, Lec-ture notes in physics 530, p.106 https://doi.org/10.1007/BFb0106425
  32. Reid, A. D., Hunstead, R. W., Lemonon, L., & Pierre, MM. 1999, MNRAS, 302, 571 https://doi.org/10.1046/j.1365-8711.1999.02177.x
  33. Schuecker, P., B$\ddot{o}$hringer, H., Reiprich, T. H., & Feretti, L.,A&A, 378, 408 https://doi.org/10.1051/0004-6361:20011215
  34. Thierbach, M., Klein, U., & Wielebinski, R. 2003, A&A,397, 53 https://doi.org/10.1051/0004-6361:20021474
  35. Venturi, T., Bardelli, S., Dallacasa, D., Brunetti, G., Giac-intucci, S., Hunstead, R. W., & Morganti, R. 2003, A&A,402, 913 https://doi.org/10.1051/0004-6361:20030345
  36. Willson M. A. G. 1970, MNRAS, 151, 1 https://doi.org/10.1093/mnras/151.1.1

Cited by

  1. Radio halos in future surveys in the radio continuum vol.548, 2012, https://doi.org/10.1051/0004-6361/201220018
  2. Radio signature of cosmological structure formation shocks vol.375, pp.1, 2007, https://doi.org/10.1111/j.1365-2966.2006.11111.x
  3. A FIRST ESTIMATE OF RADIO HALO STATISTICS FROM LARGE-SCALE COSMOLOGICAL SIMULATION vol.759, pp.2, 2012, https://doi.org/10.1088/0004-637X/759/2/92
  4. Radio halos in nearby (z < 0.4) clusters of galaxies vol.507, pp.3, 2009, https://doi.org/10.1051/0004-6361/200912667
  5. High energy neutrinos from cosmic ray interactions in clusters of galaxies vol.73, pp.4, 2006, https://doi.org/10.1103/PhysRevD.73.043004
  6. Clusters of galaxies: observational properties of the diffuse radio emission vol.20, pp.1, 2012, https://doi.org/10.1007/s00159-012-0054-z
  7. Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations vol.385, pp.3, 2008, https://doi.org/10.1111/j.1365-2966.2008.12957.x
  8. Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating vol.527, 2011, https://doi.org/10.1051/0004-6361/201015652
  9.  -ray emission associated with cluster-scale AGN outbursts vol.382, pp.1, 2007, https://doi.org/10.1111/j.1365-2966.2007.12395.x
  10. Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio haloes and relics with predictions of the γ-ray emission vol.385, pp.3, 2008, https://doi.org/10.1111/j.1365-2966.2008.12956.x
  11. DEEP 1.4 GHz FOLLOW-UP OF THE STEEP SPECTRUM RADIO HALO IN A521 vol.699, pp.2, 2009, https://doi.org/10.1088/0004-637X/699/2/1288
  12. USING RADIO HALOS AND MINIHALOS TO MEASURE THE DISTRIBUTIONS OF MAGNETIC FIELDS AND COSMIC RAYS IN GALAXY CLUSTERS vol.722, pp.1, 2010, https://doi.org/10.1088/0004-637X/722/1/737
  13. PROPAGATION OF ULTRAHIGH ENERGY NUCLEI IN CLUSTERS OF GALAXIES: RESULTING COMPOSITION AND SECONDARY EMISSIONS vol.707, pp.1, 2009, https://doi.org/10.1088/0004-637X/707/1/370
  14. Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz vol.852, pp.2, 2018, https://doi.org/10.3847/1538-4357/aa9f13