DOI QR코드

DOI QR Code

MASS-TO-LIGHT RATIO AND THE TULLY-FISHER RELATION

  • Published : 2004.09.01

Abstract

We analyze the dependence of the mass-to-light ratio of spiral galaxies on the present star formation rate (SFR), and find that galaxies with high present star formation rates have low mass-to-light ratios, presumably as a result of the enhanced luminosity. On this basis we argue that variations in the stellar content of galaxies result in a major source of intrinsic scatter in the Tully-Fisher relation (TF relation). Ideally one should use a 'population-corrected' luminosity. We have also analyzed the relation between the (maximum) luminous mass and rotational velocity, and find it to have a small scatter. We therefore propose that the physical basis of the Tully-Fisher relation lies in a relationship between the luminous mass and rotational velocity, in combination with a 'well-behaved' relation between luminous and dark matter. This implies that the Tully-Fisher relation is a combination of two independent relations: (i) a relation between luminosity and (luminous) mass, based mainly on the star formation history in galaxies, and (ii) a relation between mass and rotation velocity, which is the outcome of the process of galaxy formation. In addition to a 'population-corrected' Tully-Fisher relation, one may also use the relation between mass and luminosity, and the relation between luminous mass and rotation velocity as distance estimators.

Keywords

References

  1. Allen, C. W. 1976, Astrophysical Quantities, Astrophysical Quantities. Athlone Press, London, p. 162
  2. Aoki, T. E., Hiromoto, N., Takami, H., & Okamura, S. 1991, JHK imaging of the edge-on spiral galaxy NGC 891, PASJ, 43, 755
  3. Bell, E. F., & de Jong, R. S. 2001, Stellar Mass-to-Light Ratios and the Tully-Fisher Relation, ApJ, 550, 212 https://doi.org/10.1086/319728
  4. Bernstein, G. M., Guhathakurta, P., Raychaudhury, S., Giovanelli, R., Haynes, M. P., Herter, T., & Vogt, N. P. 1994, Tests of the Tully-Fisher relation. 1: Scatter in infrared magnitude versus 21 CM width, AJ, 107, 1962 https://doi.org/10.1086/117008
  5. Bershady, Iv1. A., et al. 2004, SparsePak: A Formatted Fiber Field Unit for the WlYlv Telescope Bench Spectrograph. I. Design, Construction, and Calibration, PASP, 116, 565 https://doi.org/10.1086/421057
  6. Bothun, G. D., & Mould, J. R. 1987, Sources of error in the Tully-Fisher relation - Reducing the scatter with CCD I-band surface photometry of spiral galaxies, ApJ, 313, 629 https://doi.org/10.1086/165002
  7. Bothun, G. D., Geller, M. J., Kurtz, M. J., Huchra, J. P., & Schild, R. E. 1992, The velocity-distance relation for galaxies on a bubble, ApJ, 395, 347 https://doi.org/10.1086/171657
  8. Bottema, R. 1993, The Stellar Kinematics of Galactic Disks, A&A, 275,16
  9. Bottema, R. 1997, The maximum rotation of a galactic disc, A&A, 328, 517
  10. Bruzual, A. G., & Charlot, S. 1993, Spectral evolution of stellar populations using isochrone synthesis, ApJ, 405, 538 https://doi.org/10.1086/172385
  11. Burstein, D. 1982, Mass and luminosity in spiral galaxies and the Tully-Fisher relation, ApJ, 253, 539 https://doi.org/10.1086/159656
  12. Burstein, D., Condon, J. J., & Yin, Q. F. 1987, The relationship between stellar population and radio continuum emission in spiral galaxies, ApJ, 315, L99 https://doi.org/10.1086/184868
  13. Byun, Y.-I. 1992, PhD Thesis, Australian National University
  14. Casertano, S., & van Albada, T. S. 1990; Systematic Properties of Rotation Curves and Dark Matter, in LyndenBell, D., & Gilmore, G., eds, Baryonic Dark Matter. Kluwer, Dordrecht, p. 159
  15. de Jong, R. S. 1995, PhD Thesis, University of Groningen
  16. de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, Jr. H. G. 1976, Second Reference Catalogue of Bright Galaxies. Univ. of Texas Press, Austin
  17. Devereux, N. A., & Young, J. S. 1990, The origin of the farinfrared luminosity from spiral galaxies, ApJ, 350, L25 https://doi.org/10.1086/185659
  18. Devereux, N. A., & Young, J. S. 1991, The rate and efficiency of high-mass star formation along the Hubble sequence, ApJ, 371, 515 https://doi.org/10.1086/169915
  19. Djorgovski, S., 1992, Systematics of Galaxy Properties: Hints About Their Formation, in de Carvalho, R. R., ed, Cosmology and Large-Scale Structure in the Universe. Astronomical Society of Pacific, Provo, p. 19
  20. Djorgovski, S., de Carvalho, R., & Han, M.-S. 1988, The universality(?) of distance-indicator relations, in van den Bergh, S. & Pritchet, C. J., eds, The Extragalactic Distance Scale. Astronomical Society of Pacific, Provo, p. 329
  21. Fernie, J. D. 1983, Relationships between the Johnson and Kron-Cousins VRI photometric systems, PASP, 95, 782 https://doi.org/10.1086/131254
  22. Freeman, K. C. 1992, Dark matter in galaxies, in Thuan, T. X., et al., eds, Physics of Nearby Galaxies: Nature or Nurture? Editions Frontieres, Gif-sur-Yvette, p. 201
  23. Frogel, J. A., Persson, S. E., Aaronson, M., & Matthews, K. 1978, Photometric studies of composite stellar systems. I - CO and JHK observations of E and SOgalaxies, ApJ, 220, 75 https://doi.org/10.1086/155883
  24. Fukugita, M., Okamura, S., Tarusawa, K., Rood, J., & Williams, B. A. 1991, The distance to the Coma cluster using the B-band Tully-Fisher relation, ApJ, 376, 8 https://doi.org/10.1086/170250
  25. Giraud, E. H. 1986a, A color dependence in the distance moduli derived from the Band H band Tully-Fisher relations, A&A, 155, 283
  26. Giraud, E. H. 1986b, A two-color Tully-Fisher relation, A&A, 164, 17
  27. Guhathakurta, P., Bernstein, G. M., Raychaudhury, S., Haynes, M., Giovanelli, R., Herter, T., & Vogt, N. 1993, The near-infrared Tully-Fisher relation - A preliminary study of the Coma and Abell 400 clusters, PASP, 105, 1022 https://doi.org/10.1086/133276
  28. Guthrie, B. N. G. 1992, Axial ratios of edge-on spirals, A&AS, 93, 255
  29. Han, M. 1992, The internal extinction in spiral galaxies, ApJ, 391, 617 https://doi.org/10.1086/171375
  30. Holmberg, E. 1958, A photographic photometry of extragalactic nebulae, Medd, Lunds Astron. Obs., Ser. II, No. 136
  31. Ichikawa, T., & Fukugita, M. 1992, Hubble flows in the Pisces-Perseus region from the Giovanelli-Haynes Galaxy sample, ApJ, 394, 61 https://doi.org/10.1086/171559
  32. Kannappan, S. J., Fabricant, D. G., & Franx, M. 2002, Physical Sources of Scatter in the Tully-Fisher Relation, AJ, 123, 2358 https://doi.org/10.1086/339972
  33. Kent, S. M. 1986, Dark matter in spiral galaxies. I - Galaxies with optical rotation curves, AJ, 91, 1301 https://doi.org/10.1086/114106
  34. Kester, D. J. M., Bontekoe, T. J. R., de Jonge, A. R. W., & Wesselius, P. R. 1989, IRAS Calibration, in Di Gesu, V., et al., eds, Data Analysis in Astronomy III. Plenum Press, New York, p. 141
  35. Kraan-Korteweg, R. C. 1986, A catalog of 2810 nearby galaxies - The effect of the Virgocentric flow model on their observed velocities, A&AS, 66, 255
  36. Lauberts, A., & Valentijn, E. A. 1989, The Surface Photometry Catalogue of the ESO-Uppsala Galaxies, European Southern Observatory, Garching
  37. Lonsdale Persson, C. J., & Helou, G. 1987, On the origin of the 40-120 micron emission of galaxy disks A comparison with H-alpha fluxes, ApJ, 314, 513 https://doi.org/10.1086/165082
  38. Lu, N. Y., Hoffman, G. L., Groff, T., Roos, T., & Lamohier, C. 1993, HI 21 centimeter observations and I-band CCD surface photometry of spiral galaxies behind the Virgo Cluster and toward its antipode, ApJS, 88, 383 https://doi.org/10.1086/191826
  39. Mathewson, D. S., Ford, V. L., & Buchhorn, M. 1992, A southern sky survey of the peculiar velocities of 1355 spiral galaxies, ApJS, 81, 413 https://doi.org/10.1086/191700
  40. Oepik, E. 1922, An estimate of the distance of the Andromeda Nebula, ApJ, 55, 406 https://doi.org/10.1086/142680
  41. Pierce, M. J., & Tully, R. B. 1992, Luminosity-line width relations and the extragalactic distance scale. I - Absolute calibration, ApJ, 387, 47 https://doi.org/10.1086/171059
  42. Rhee, M.-H. 1996, A physical basis of the Tully-Fisher relation, PhD Thesis, University of Groningen
  43. Rhee, M.- H. 2004, On the Physical Basis of the Tully-Fisher Relation, JKAS, 37, 15
  44. Rhee, M.-H., & van Albada, T. S. 1993, Mass-to-light ratio and the Tully-Fisher relation, in Bouchet, RR, & Lachieze-Rey, M., eds, Cosmic Velocity Fields (the 9th lAP Astrophysics Meeting), Editions Frontieres, Gif-surYvette, p. 89
  45. Rhee, M.-H., Peletier, R. F., & van Albada, T. S. 1995, On the turnover of the Tully-Fisher relation, ApL&C, 31, 275
  46. Russell, D. G. 2004, Morphological Type Dependence in the Tully-Fisher Relationship, ApJ, 607, 241 https://doi.org/10.1086/383298
  47. Rubin, V. C., Burstein, D., Ford, W. K. Jr., & Thonnard, N. 1985, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, ApJ, 289, 81 https://doi.org/10.1086/162866
  48. Sakai, S., et al. 2000, The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXIV. The Calibration of Tully-Fisher Relations and the Value of the Hubble Constant, ApJ, 529, 698 https://doi.org/10.1086/308305
  49. Salucci, P., Frenk, C. S., & Persic, M. 1993, A physical distance indicator for spiral galaxies and the determination of H sub 0, MNRAS, 262, 392 https://doi.org/10.1093/mnras/262.2.392
  50. Sanders, R H., & Begeman, K. G. 1994, Modified Dynamics/ MOND / as a Dark Halo, MNRAS, 266, 360 https://doi.org/10.1093/mnras/266.2.360
  51. Schommer, R. A., Bothun, G. D., Williams, T. B., & Mould, J. R. 1993, Measuring galaxy distances from optical rotation curves, AJ, 105, 97 https://doi.org/10.1086/116411
  52. Silk, J. 1989, Is cosmic drift a cosmic myth?, ApJ, 345, L1 https://doi.org/10.1086/185537
  53. Silk, J. 1992, The rate of star formation in galactic disks, Aust. J. Phys., 45, 437 https://doi.org/10.1071/PH920437
  54. Thronson, H. A., & Greenhouse, M. A. 1988, Near-infrared mass-to-light ratios in galaxies - Stellar mass and star formation in the heart of the Whirlpool, ApJ, 327, 671 https://doi.org/10.1086/166224
  55. Tinsley, B. M. 1981, Correlation of the dark mass in galaxies with Hubble type, MNRAS, 194, 63 https://doi.org/10.1093/mnras/194.1.63
  56. Tully, R. B., & Fisher, J. R. 1977, A new method of determining distances to galaxies, A&A, 54, 661
  57. Tully, R B., & Pierce, M. J. 2000, Distances to Galaxies from the Correlation between Luminosities and Line Widths. III. Cluster Template and Global Measurement of Ho, ApJ, 533, 744 https://doi.org/10.1086/308700
  58. van Albada, T. S., Bahcall, J. N., Begeman, K., & Sancisi, R 1985, Distribution of dark matter in the spiral galaxy NGC 3198, ApJ, 295, 305 https://doi.org/10.1086/163375
  59. van der Kruit, P. C., & Searle, L. 1981, Surface photometry of edge-on spiral galaxies. I - A model for the threedimensional distribution of light in galactic disks. II - The distribution of light and colour in the disk and spheroid of NGC 891, A&A, 95, 105
  60. Verheijen, M. A. W. 1997, The Ursa Major Cluster of Galaxies: TF-relations and dark matter, PhD Thesis, University of Groningen
  61. Verheijen, M. A. W. 2001, The Ursa Major Cluster of Galaxies. V. H I Rotation Curve Shapes and the TullyFisher Relations, ApJ, 563, 694 https://doi.org/10.1086/323887
  62. Verheijen, M. A. W., et al. 2004, The Disk Mass project; science case for a new PMAS IFU module, AN, 325, 151
  63. Whitmore, B. C 1984, An objective classification system for spiral galaxies. I The two dominant dimensions, ApJ, 278, 61 https://doi.org/10.1086/161768
  64. Zaritsky, D. 1995, Evidence for Recent Accretion in Nearby Galaxies, ApJ, 448, L17 https://doi.org/10.1086/175938

Cited by

  1. The “graviton picture”: a Bohr model for gravitation on galactic scales?1 vol.93, pp.2, 2015, https://doi.org/10.1139/cjp-2014-0158
  2. First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon vol.838, pp.1, 2017, https://doi.org/10.3847/1538-4357/aa60c4
  3. The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully–Fisher relation atz∼ 1 vol.460, pp.1, 2016, https://doi.org/10.1093/mnras/stw936