상관우물들이 분포하는 화산섬 집수역에 대한 지하수 양수능의 평가 I. 수질(水質)을 고려하지 않은 경우

The Evaluation of Groundwater Pumping Capacity at a Catchment Area with Interrelated Wells in Volcanic Island: I. Without Consideration of Water Quality

  • Lee, Sunhoon (Graduate School of Science and Technology, Chiba University) ;
  • Machida, Isao (Japan Science and Technology Corporation) ;
  • Imoto, Yukari (Graduate School of Science and Technology, Chiba University)
  • 투고 : 2003.06.09
  • 심사 : 2003.07.04
  • 발행 : 2003.07.31

초록

본 연구는 수지해석(數値解析)을 이용하여 상관우물들의 분포를 갖는 집수역에서 수질을 고려하지 않은 상태의 지하수양수능을 평가하는 것을 목적으로 한다. 연구지역은 일본(日本)의 미야께지마(삼탁도)이며, 미야께지마는 최근에 이르기까지 화산분화(火山噴火)가 계속되고 있는 화산섬으로 수문지질학적(水文地質學的)으로 매우 복잡한 구조를 갖고 있다. 각각의 우물들에 대한 양수능은 개별(個別)양수에 의해서 구해진 IMY(i,t)로써 추정되었으며, 전(全) 연구지역의 양수능은 개별(個別)양수에 의해서 구해진SSMY(i,t)로써 추정되었다. 이러한 결과들은 미야께지마와 같은 화산섬에서 용수(用水)공급을 위한 계획의 수립에 있어서 확실한 공급원의 확보에 이용될 수 있다. 동시양수의 경우, 우물 5와 6에서의 양수는 타이로이께(대로지(大路池))부근에 존재하던 지하수가 연구지역의 내부에 까지 침투하는 것에 대한 장해(障害)우물로써 작용했다. 그러므로, 본 연구는 질적(質的), 양적(量的) 측면에서 용수공급을 위한 지하수의 최적(最適)관리방법으로써 동시양수를 제안한다.

The purpose of this paper is to evaluate the groundwater pumping capadty at a catchment area containing interrelated wells without considering their qualities by using numerical simulation in Miyake Island, young volcanic island with very complicated hydro-geological formations. The groundwater pumping capadties of each well and over entire study area were estimated as the IMY(i,t) by individual withdrawals and the SSMY(t) by simultaneous withdrawals. These results can be used to secure a sure source for taking a plan for supplying water use in young volcanic island as Miyake Island. In simultaneous withdrawals, the withdrawals from well no. 5 and 6 should have the roles as the barrier wells against the intrusion of the groundwater of the part adjacent to Tairo Pond into the inner part of study area. Therefore, it can be suggested to adopt the simultaneous withdrawals as the optimal approach of groundwater management for supplying water use with respect to quantity and quality.

키워드

참고문헌

  1. Bachmat, Y, B. Andrews, D. Holtz, and S. Sebastian, 1978, Utilization of numerical groundwater models for water resource management, Report No. EPA-600/8-78-012, Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US. Environmental Protection Agency, Acta, OK74820
  2. Huyakom, P. S. and G. F. Pinder, 1983, Computational methods in subsurface flow, Academic Press, New York, N. Y.
  3. Istok, J., 1989, Groundwater modeling by the finite element method, American Geophysical Union, Water Resources Monograph 13
  4. Lee, S. H., 2001, Consideration on the validity and physical meaning of parameters in sorptivity expression, Unpublished PhD. thesis, Chiba University, Japan
  5. Orlob, G. T. and P. C. Woods, 1967, Water-quality management in irrigation systems, Journal of the irrigation and drainage division, American society of civil engineers, 93, 49-66
  6. Pinder, G. F. and E. O. Frind, 1972, Application of Galerkin's procedure to aquifer analysis, Water Resources Reserch, 8, 108-120 https://doi.org/10.1029/WR008i001p00108
  7. Pinder, G. F. and J. D. Bredehoeft, 1968, Application of the digital computer for aquifer evaluation, Water Resources Research, 4, 1069-1093 https://doi.org/10.1029/WR004i005p01069
  8. Pricket, T. A., 1975, Modeling techniques for groundwater evaluation. In: Advances in Hydroscience, 10, Academic Press, New York, 1-143
  9. Tsukui, M. and Y. Suzuki, 1998, Eruptive history of Miyakejima Volcanic during the last 7000 years, Kazan, 4, 149-166